scholarly journals Effect of substrate annealing on wetting behavior and interfacial reaction between Sn-0.7Cu and amorphous Fe84.3Si10.3B5.4 alloy

2021 ◽  
Vol 1777 (1) ◽  
pp. 012023
Author(s):  
B Hou ◽  
H Q Wang ◽  
Y P Zhang ◽  
H Y Wang ◽  
C Y Zeng ◽  
...  
2018 ◽  
Vol 206 ◽  
pp. 03005
Author(s):  
Bin Hou ◽  
Fengmei Liu ◽  
Hongqin Wang ◽  
Yupeng Zhang ◽  
Jianglong Yi ◽  
...  

In order to explore the effect of addition of mixed rare earths (MRE) on the wetting behavior and interfacial reaction between Sn-0.70Cu-0.05Ni solder and amorphous Fe84.3Si10.3B5.4 alloy, 0.25 wt.% percentage of the MRE, which are mainly elements La and Ce, were added into the solder. Results show it can refine the microstructure of the solder alloy, and there is limited change of melting temperature with the addition of MRE in the solder. The wettability of the solder on amorphous substrate is improved by adding 0.25 wt.% percentage of the MRE into Sn-0.70Cu-0.05Ni solder. Moreover, research results indicate that, with the increase of wetting temperature, the final equilibrium wetting angles of Sn-0.70Cu-0.05Ni and Sn-0.70Cu-0.05Ni-0.25MRE on amorphous substrate decrease gradually, indicating the better wettability at the higher wetting temperature. In addition, with the increase of temperature, the distribution of intermetallic compound (IMC) FeSn2 formed at the interface between the two solders and amorphous substrate is changed from discontinuous state to continuous state. The thickness of the interfacial IMC layer between solder and amorphous substrates reduced with the addition of MRE, indicating that the presence of 0.25 wt.% percentage of the MRE is effective in suppressing the growth of IMC layer.


1999 ◽  
Vol 86 (12) ◽  
pp. 6746-6751 ◽  
Author(s):  
P. G. Kim ◽  
J. W. Jang ◽  
T. Y. Lee ◽  
K. N. Tu

2008 ◽  
Vol 38 (1) ◽  
pp. 25-32 ◽  
Author(s):  
S.C. Yang ◽  
W.C. Chang ◽  
Y.W. Wang ◽  
C.R. Kao

2017 ◽  
Vol 893 ◽  
pp. 132-135
Author(s):  
Zhi Xin Liu ◽  
Wen Song Lin

The wetting behavior of SiC by molten Al and Al-Mg alloys using the sessile-drop testing equipment was investigated. The results showed that Mg has a remarkable influence on the wettability and reaction in the Al/SiC system. The contact angle between SiC substrate and molten Al-Mg alloys decreased more quickly with increasing of Mg content. The transition temperature from non-wetting to wetting dropped with increasing of Mg content, suggesting that the addition of Mg does promote the wettability of SiC by molten Al. The role of the Mg addition on the wetting was presumably attributed to its deoxidation as well as the inhibition of the interfacial reaction between Al and SiC.


2017 ◽  
Vol 48 (12) ◽  
pp. 1077-1088
Author(s):  
Yukihiro Yonemoto ◽  
Tomoaki Kunugi
Keyword(s):  

1990 ◽  
Vol 45 (2) ◽  
pp. 231-244 ◽  
Author(s):  
H. A. Nasr-El-Din ◽  
K. C. Khulbe ◽  
V. Hornof ◽  
G. H. Neale

Author(s):  
Sudhakar Sekar ◽  
Shee Sim May

The aim of the study is to formulate a modified release chitosan nanoparticles for the oral delivery of atorvastatin and to study the in vitro release of atorvastatin from chitosan nanoparticles. Atorvastatin-loaded chitosan nanoparticles were prepared with different concentration of cross-linking agent (glutaraldehyde) by emulsion interfacial reaction method. The formed nanoparticles were characterized in terms of size and morphological characteristics by scanning electron microscopy (SEM) and transmission electron microscope (TEM). Spherical and regular nanoparticles with the size range of 100-250nm were formed. Atorvastatin encapsulation efficiency of nanoparticles was found to be highest in ANP3, followed by ANP2 and ANP1. The in vitro release of atorvastatin was studied by membrane diffusion technique. The resulted cumulative percentage of drug released for ANP1, ANP2 and ANP3 were 60.08%, 34.81% and 20.39% respectively. Through this study, the nanoparticles preparation technique has shown to be a promising approach for enhancing the dissolution of hydrophobic drugs like atorvastatin calcium. The application of this novel delivery system offers good therapeutic potential in the management of hypercholesterolemia and dyslipidemia.


Sign in / Sign up

Export Citation Format

Share Document