Improving the Electrical Parameters of Se80Te20 Films by the Sn Substitution for Te and Thermal-Induced Effect

Author(s):  
M. Rashad ◽  
R. Amin ◽  
S. A. Al-Ghamdi ◽  
M. M. Hafiz ◽  
Alaa M. Abd-Elnaiem
2020 ◽  
pp. 89-96
Author(s):  
Sergei S. Kapitonov ◽  
Alexei S. Vinokurov ◽  
Sergei V. Prytkov ◽  
Sergei Yu. Grigorovich ◽  
Anastasia V. Kapitonova ◽  
...  

The article describes the results of comprehensive study aiming at increase of quality of LED luminaires and definition of the nature of changes in their correlated colour temperature (CCT) in the course of operation. Dependences of CCT of LED luminaires with remote and close location of phosphor for 10 thousand hours of operation in different electric modes were obtained; the results of comparison between the initial and final radiation spectra of the luminaires are presented; using mathematical statistics methods, variation of luminaire CCT over the service period claimed by the manufacturer is forecast; the least favourable electric operation modes with the highest CCT variation observed are defined. The obtained results have confirmed availability of the problem of variation of CCT of LED luminaires during their operation. Possible way of its resolution is application of more qualitative and therefore expensive LEDs with close proximity of phosphor or LEDs with remote phosphor. The article may be interesting both for manufacturers and consumers of LED light sources and lighting devices using them.


2021 ◽  
Vol 2 ◽  
pp. 100015
Author(s):  
Abdul Manan ◽  
Murad Ali Khan ◽  
Arbab Safeer Ahmad ◽  
Atta Ullah ◽  
Arshad Hussain wazir ◽  
...  

2018 ◽  
Vol 2 (9) ◽  
Author(s):  
Andrew F. May ◽  
Huibo Cao ◽  
Stuart Calder
Keyword(s):  

2021 ◽  
Vol 13 (3) ◽  
pp. 3793-3804
Author(s):  
Siqi Yuan ◽  
Jizhen Qi ◽  
Meidan Jiang ◽  
Guijia Cui ◽  
Xiao-Zhen Liao ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 585
Author(s):  
Yunjia Li ◽  
Weitao Dou ◽  
Chenyuan Zhou ◽  
Xinyi Wang ◽  
Aijun Yang ◽  
...  

A miniaturized reliability test system for microdevices with controlled environmental parameters is presented. The system is capable of measuring key electrical parameters of the microdevices while controlling the environmental conditions around the microdevices. The test system is compact and thus can be integrated with standard test equipment for microdevices. By using a feed-forward decoupling algorithm, the presented test system is capable of generating a temperature range of 0–120 °C and a humidity range of 20–90% RH (0–55 °C), within a small footprint and weight. The accuracy for temperature and humidity control is ±0.1 °C and ±1% RH (30 °C), respectively. The functionality of the proposed test system is verified by integrating it with a piezo shaker to test the environmental reliability of an electromagnetic vibration energy harvester. The proposed system can be used as a proof-of-technology platform for characterizing the performance of microdevices with controlled environmental parameters.


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 114
Author(s):  
Katarzyna Pentoś ◽  
Krzysztof Pieczarka ◽  
Kamil Serwata

Soil spatial variability mapping allows the delimitation of the number of soil samples investigated to describe agricultural areas; it is crucial in precision agriculture. Electrical soil parameters are promising factors for the delimitation of management zones. One of the soil parameters that affects yield is soil compaction. The objective of this work was to indicate electrical parameters useful for the delimitation of management zones connected with soil compaction. For this purpose, the measurement of apparent soil electrical conductivity and magnetic susceptibility was conducted at two depths: 0.5 and 1 m. Soil compaction was measured for a soil layer at 0–0.5 m. Relationships between electrical soil parameters and soil compaction were modelled with the use of two types of neural networks—multilayer perceptron (MLP) and radial basis function (RBF). Better prediction quality was observed for RBF models. It can be stated that in the mathematical model, the apparent soil electrical conductivity affects soil compaction significantly more than magnetic susceptibility. However, magnetic susceptibility gives additional information about soil properties, and therefore, both electrical parameters should be used simultaneously for the delimitation of management zones.


Sign in / Sign up

Export Citation Format

Share Document