Effect of temperature and filler concentration on the electrical parameters of a dispersion of carbon nanotubes in an epoxy matrix

2002 ◽  
Vol 737 ◽  
Author(s):  
D. Sarangi ◽  
A. Karimi

ABSTRACTCarbon nanotubes on metallic wires may be act as electrode for the field emission (FE) luminescent devices. Growing nanotubes on metallic wires with controlled density, length and alignment are challenging issues for this kind of devices. We, in the present investigation grow carbon nanotubes directly on the metal wires by a powerful but simple technique. A novel approach has been proposed to align nanotubes during growth. Methane, acetylene and dimethylamine have been used as source gases. With the same growth conditions (viz. pressure, growth temperature and plasma) methane does not produce any nanotube but nanotubes grown with dimethylamine show shorter length and radius than acetylene. The effect of temperature to control the radius, time to control the density, plasma conditions to align the nanotubes has been focused. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Rutherford Back Scattering (RBS) are used to characterize the nanotubes.


2011 ◽  
Vol 13 (2) ◽  
pp. 62-69 ◽  
Author(s):  
Maria Wladyka-Przybylak ◽  
Dorota Wesolek ◽  
Weronika Gieparda ◽  
Anna Boczkowska ◽  
Ewelina Ciecierska

The effect of the surface modification of carbon nanotubes on their dispersion in the epoxy matrix Functionalization of multi-walled carbon nanotubes (MWCNTs) has an effect on the dispersion of MWCNT in the epoxy matrix. Samples based on two kinds of epoxy resin and different weight percentage of MWCNTs (functionalized and non-functionalized) were prepared. Epoxy/carbon nanotubes composites were prepared by different mixing methods (ultrasounds and a combination of ultrasounds and mechanical mixing). CNTs modified with different functional groups were investigated. Surfactants were used to lower the surface tension of the liquid, which enabled easier spreading and reducing the interfacial tension. Solvents were also used to reduce the liquid viscosity. Some of them facilitate homogeneous dispersion of nanotubes in the resin. The properties of epoxy/nanotubes composites strongly depend on a uniform distribution of carbon nanotubes in the epoxy matrix. The type of epoxy resin, solvent, surfactant and mixing method for homogeneous dispersion of CNTs in the epoxy matrix was evaluated. The effect of CNTs functionalization type on their dispersion in the epoxy resins was evaluated on the basis of viscosity and microstructure studies.


2012 ◽  
Vol 26 (21) ◽  
pp. 1250136 ◽  
Author(s):  
SAJJAD DEHGHANI ◽  
MOHAMMAD KAZEM MORAVVEJ-FARSHI ◽  
MOHAMMAD HOSSEIN SHEIKHI

We present a model to understand the effect of temperature on the electrical resistance of individual semiconducting single wall carbon nanotubes (s-SWCNTs) of various diameters under various electric fields. The temperature dependence of the resistance of s-SWCNTs and metallic SWCNTs (m-SWCNTs) are compared. These results help us to understand the temperature dependence of the resistance of SWCNTs network. We experimentally examine the temperature dependence of the resistance of random networks of SWCNTs, prepared by dispersing CNTs in ethanol and drop-casting the solution on prefabricated metallic electrodes. Examining various samples with different electrode materials and spacings, we find that the dominant resistance in determination of the temperature dependence of resistance of the network is the resistance of individual tubes, rather than the tube–tube resistance or tube–metal contact resistance. It is also found that the tube–tube resistance depends on the electrode spacing and it is more important for larger electrode spacings. By applying high electric field to burn the all-metallic paths of the SWCNTs network, the temperature dependence of the resistance of s-SWCNTs is also examined. We also investigate the effect of acid treatment of CNTs on the temperature dependence of the resistance of SWCNTs and also multi-wall CNTs (MWCNTs) networks.


2013 ◽  
Vol 48 (25) ◽  
pp. 3169-3177 ◽  
Author(s):  
SG Prolongo ◽  
BG Melitón ◽  
A Jiménez-Suárez ◽  
A Ureña

2009 ◽  
Vol 79-82 ◽  
pp. 553-556 ◽  
Author(s):  
Ling Fei Shi ◽  
Gang Li ◽  
Gang Sui ◽  
Xiao Ping Yang

The increasing proliferation and application of advanced polymer composites requires higher and broader performance resin matrices. Poly(oxypropylene) with –NH2 end-groups has been widely used to toughen epoxy resins, but the strength of resin matrix may be reduced due to the addition of flexible segments in the crosslinking network. Carbon nanotubes (CNTs) have been paid more and more attention in recent years because of their superior thermal and mechanical properties. In this paper, CNTs grafted with Jeffamines T403 were used to simultaneously improve the reinforcement and toughening of an epoxy resin. The untreated multi-walled carbon nanotubes (u-MWNTs) were functionalized with amine groups according to three steps: carboxylation, acylation, and amidation. The f-MWNTs were characterized by Fourier transform infra-red (FTIR) and X-ray photoelectron spectroscopy (XPS). The experimental results indicated that the T403 was grafted to the surface of MWCNTs. The mechanical and thermal properties of epoxy with f-MWNTs were investigated. The tensile and flexural strength increased by 7.77 % and 7.03 % after adding 0.5wt% f-MWCNTs without sacrificing the impact toughness. At the same time, dynamic mechanical thermal analysis (DMTA) showed that the glass transition temperature (Tg) of epoxy with f-MWNTs were increased. The fracture surface of epoxy with f-MWNTs was observed by scanning electron microscopy (SEM) to understand the dispersion of f-MWNTs in epoxy matrix and interfacial adhesion between f-MWNTs and epoxy matrix, which can be attributed to the strong interfacial bonding between f-MWNTs and epoxy resin.


Author(s):  
Kepin Kavathia ◽  
Manoj Settipalli ◽  
Samikkannu Raja

This paper presents a simulation-based study to investigate the damping properties of a novel piezocomposite, consisting of piezoelectric fiber and epoxy reinforced with randomly orientated double walled carbon nanotubes (DWCNT), termed as piezoelectric fiber nano reinforced composite (PFNRC). Authors have observed that the past research dealt with the effect of aligned single walled carbon nanotubes (CNT) on active damping of piezoelectric composite in extension mode (e13 and e33). It is known from the past research that DWCNT inclusions improve the passive damping of a composite. Therefore, the authors use DWCNT inclusions to study the active-passive damping of the piezoelectric composite, in this article. The random orientation of the DWCNT is considered to replicate the physical composite as it known that aligning CNTs in a single direction is not feasible due to fabrication constraints. A multistep homogenization method involving Method of Cells (MOC) is employed to obtain effective properties of PFNRC. A modified 3D-MOC is used to obtain the effective properties of epoxy matrix with DWCNT inclusions (DWCNT-epoxy), considering the effect of nano particle agglomeration. A 2D-MOC is then implemented with long fiber PZT as the active material and DWCNT-epoxy as the matrix. This procedure is followed for computing the effective material properties of extension (e33) as well as shear (e15) mode of PFNRC, when DWCNT inclusions are added into the epoxy matrix at different weight percentages. The constitutive equations are derived with the help of Maple and simulated in MATLAB. These results are used to compare the active-passive damping performance of the composites using a single degree of freedom damping model, employing Newmark’s numerical integration method. The active damping performance of the composites is evaluated by varying the displacement and velocity gains in a negative feedback system. The main focus of the study is to find the most efficient operating mode of the proposed composite for damping of structural vibrations.


2011 ◽  
Vol 2011 (HITEN) ◽  
pp. 000014-000020 ◽  
Author(s):  
James Galipeau ◽  
George Slama

As more electronics are used in down-hole energy exploration, under the hood automotive applications, and in other environments where temperatures exceed 200 °C; there is a need for compact passive magnetic components that operate reliably at elevated temperatures. Most ferrites used to make multi layer ceramic inductors have Curie temperatures in the 100–200 °C range. As temperatures rise above the Curie point ferrites lose their magnetic properties and become paramagnetic. This means that traditional multi-layer ceramic inductors suffer severe performance degradation when operated at elevated temperatures. Therefore, ferrite materials with higher Curie temperatures need to be developed to increase device performance and reliability at these high temperatures. In this work inductors were made from a low-temperature, co-fire compatible, ferrite with a Curie temperature of 350 °C. The inductors were first subjected to a 1000 hour life test at 300 °C during which the electrical parameters were found to change no more than 4 %. The inductance, resistance, core loss, and saturation flux density of the inductors were measured at various temperatures. Additional testing focused on the effect of temperature on the device's frequency profile and performance changes under thermal cycling and thermal shock.


Sign in / Sign up

Export Citation Format

Share Document