Taguchi Optimization of Wear Resistance of CrN Coatings Deposited on WC Substrates Using High-Power Impulse Magnetron Sputtering Technology and Application to High-Speed Micro-Drilling

Author(s):  
W. H. Kao ◽  
Y. L. Su ◽  
S. T. Chung
Coatings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 555 ◽  
Author(s):  
Chin-Chiuan Kuo ◽  
Yu-Tse Lin ◽  
Adeline Chan ◽  
Jing-Tang Chang

Titanium nitride (TiN) coating has been used in various application as it gives excellent performance in many aspects. It has been proven to prolong machining tool life since the mid-1960s. Industrial deposition processes of TiN, including magnetron sputtering, arc ion plating, and chemical vapor depositions, have their individual advantages and limitations. Due to the rising demands of the dry machining technique, the massive amount of heat generated from the friction of cutting tools against the surface of a work piece has become the main issue to overcome. Oxidation of TiN, which occurs around 400 °C, puts a limit on the applications of the coatings. Comparing TiN tool coatings deposited by arc evaporation, the novel high-power impulse magnetron sputtering (HiPIMS) technology provides smoother film surface, denser structure and subsequent corrosion resistance. Therefore, this research aims to investigate the wear behavior of TiN thin film deposited by HiPIMS at high temperature. The influences of the coating properties on the wear resistance of coatings at high temperature are also investigated. The results show that the HiPIMS technique enables a denser epitaxial-grown TiN coating with higher surface hardness and adhesion in contrast with TiN coating deposited using direct current (DC) magnetron sputtering techniques, which provides a higher wear resistance.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7694
Author(s):  
Chin-Chiuan Kuo

Carbon–chromium carbide–chromium multilayer coatings were deposited by utilizing reactive high-power impulse magnetron sputtering with alternating various ratios of ethyne and argon mixtures under a constant total deposition pressure, target pulse frequency, pulse duty cycle, average chromium target power, and total deposition time. Two different alternating gas mixture periods were applied to obtain films with different numbers of layers and lamination thicknesses. The results show that the reduction in the modulation period effectively affects the elastic modulus and the subsequent ratio of hardness to elastic modulus (H/E) of the whole coating, which helps adapt the elastic strain in the coating. This improves the adhesion strength and wear resistance of coatings at room temperature. However, with the increase in wear test temperature, the difference between the wear behaviors of two types of coatings becomes inconspicuous. Both types of coatings lose the wear resistance due to the decomposition of hydrocarbon and the oxidation of the chromium content in the films.


2018 ◽  
Vol 281 ◽  
pp. 540-545 ◽  
Author(s):  
Wei Jie Chang ◽  
Hao Zhang ◽  
Ying Ying Chen ◽  
Jun Li ◽  
Xue Zhang ◽  
...  

The coatings deposited by physical vapor deposition (PVD) technique have found a wide industrial application as protective coatings for their attractive properties such as high hardness, good wear resistance and chemical stability. In order to explore the triboligical performances of CrSiN coatings, CrSiN coatings were prepared o the surface of 316 stainless steel by high power pulse magnetron sputtering (HPPMS) in this paper. Sliding wear tests of CrSiN coatings against Si3N4 ceramic balls and titanium balls have been carried out on a friction abrasion testing machine under reciprocating sliding conditions. nanoindentation and scratch tester, field emission scanning electron microscopy equipped with energy dispersive spectrometer (FESEM/EDS) and a X-ray diffractometer (XRD) was used to study the tribological behaviors of CrSiN coatings systematically. Results showed that CrSiN coatings exhibited good wear resistance, which can be attributed to the smoother and denser surface of CrSiN coatings resulted from much fewer macroparticles and pitting defects. The differences on wear debris removal behaviors and wear mechanism were caused by the different microstructure of CrSiN coatings.


2010 ◽  
Vol 638-642 ◽  
pp. 208-213 ◽  
Author(s):  
Brajendra Mishra ◽  
J.J. Moore ◽  
Jian Liang Lin ◽  
W.D. Sproul

High power pulsed magnetron sputtering (HPPMS) is an emerging thin film deposition technology that generate high ionization plasma by applying a very large amount of peak power to a sputtering target for a short period of time. HPPMS is also known as High Power Impulse Magnetron Sputtering (HiPIMS). However, HPPMS/HiPIMS exhibits decreased deposition rate as compared to continuous dc magnetron sputtering. Modulated pulse power (MPP) magnetron sputtering is an alternative HPPIMS deposition technique that overcomes the rate loss problem while still achieving a high degree of ionization of the sputtered material. In the present work, the principles and some important characteristics of MPP technology were presented. Technical examples of CrN coatings were deposited using MPP and continuous dc sources. The positive ion mass distributions were characterized using an electrostatic quadrupole plasma mass spectrometer. The structure and properties of MPP and dc CrN coatings were characterized using x-ray diffraction, scanning electron microscopy, nanoindentation tests, and ball-on-disc wear test. It was found that the MPP CrN coating exhibits denser microstructure and improved mechanical and tribological properties as compared to the dc CrN coating.


AIP Advances ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 015125
Author(s):  
Qian Li ◽  
Lizhen Yang ◽  
Zhengduo Wang ◽  
Haibao Zhang ◽  
Zhongwei Liu ◽  
...  

2019 ◽  
Vol 688 ◽  
pp. 137353 ◽  
Author(s):  
Behnam Akhavan ◽  
Rajesh Ganesan ◽  
Michael Stueber ◽  
Sven Ulrich ◽  
David R. McKenzie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document