scholarly journals Simulation study of particle–fluid two-phase coupling flow field and its influencing factors of crystallization process

2018 ◽  
Vol 72 (12) ◽  
pp. 3105-3117 ◽  
Author(s):  
Wen-rui Wang ◽  
Zhao Li ◽  
Jia-ming Zhang ◽  
Han-lin Li
2004 ◽  
Author(s):  
Gary Luke ◽  
Mark Eagar ◽  
Michael Sears ◽  
Scott Felt ◽  
Bob Prozan

2021 ◽  
Vol 197 ◽  
pp. 111138
Author(s):  
Changsheng Jin ◽  
Zhongwu Li ◽  
Mei Huang ◽  
Jiajun Wen ◽  
Xiang Ding ◽  
...  

1967 ◽  
Vol 89 (4) ◽  
pp. 577-586 ◽  
Author(s):  
P. Cooper

A model is developed for analytically determining pump inducer performance in both the single-phase and cavitating flow regimes. An equation of state for vaporizing flow is used in an approximate, three-dimensional analysis of the flow field. The method accounts for losses and yields internal distributions of fluid pressure, velocity, and density together with the resulting overall efficiency and pressure rise. The results of calculated performance of two sample inducers are presented. Comparison with recent theory for fluid thermal effects on suction head requirements is made with the aid of a resulting dimensionless vaporization parameter.


2021 ◽  
pp. 116948
Author(s):  
Wei Zhang ◽  
Qihong Feng ◽  
Zhehui Jin ◽  
Xiangdong Xing ◽  
Sen Wang

Author(s):  
R. Kamali ◽  
S. A. Shekoohi

Two methods for solving coupled particle dynamics and flow field equations simultaneously by considering fluid-particle interactions to simulate two-phase flow are presented and compared. In many conditions, such as magnetic micro mixers and shooting high velocity particles in fluid, the fluid-particle interactions can not be neglected. In these cases it is necessary to consider fluid-particle interactions and solve the related coupled equations simultaneously. To solve these equations, suitable algorithms should be used to improve convergence speed and solution accuracy. In this paper two algorithms for solving coupled incompressible Navier-Stokes and particle dynamics equations are proposed and their efficiencies are compared by using them in a computer program. The main criterion that is used for comparison is the time they need to converge for a specific accuracy. In the first algorithm the particle dynamics and flow field equations are solved simultaneously but separately. In the second algorithm in each iteration for solving flow field equations, the particle dynamics equation is also solved. Results for some test cases are presented and compared. According to the results the second algorithm is faster than the first one especially when there is a strong coupling between phases.


2014 ◽  
Vol 541-542 ◽  
pp. 1288-1291
Author(s):  
Zhi Feng Dong ◽  
Quan Jin Kuang ◽  
Yong Zheng Gu ◽  
Rong Yao ◽  
Hong Wei Wang

Calculation fluid dynamics software Fluent was used to conduct three-dimensional numerical simulation on gas-liquid two-phase flow field in a wet flue gas desulfurization scrubber. The k-ε model and SIMPLE computing were adopted in the analysis. The numerical simulation results show that the different gas entrance angles lead to internal changes of gas-liquid two-phase flow field, which provides references for reasonable parameter design of entrance angle in the scrubber.


2011 ◽  
Vol 130-134 ◽  
pp. 3624-3627
Author(s):  
W.L. Wei ◽  
Zhang Pei ◽  
Y.L. Liu

In this paper, we use two-phase mixture model and the Realizable k-ε turbulence model to numerically simulate the advection secondary flow in a sedimentation tank. The PISO algorithm is used to decouple velocity and pressure. The comparisons between the measured and computed data are in good agreement, which indicates that the model can fully simulate the flow field in a sedimentation tank.


2018 ◽  
Vol 19 (2) ◽  
pp. 208
Author(s):  
Xudong Zheng ◽  
Fangwei Xie ◽  
Diancheng Wu ◽  
Xinjian Guo ◽  
Bing Zhang ◽  
...  

The purpose of this paper is to study the air effects on transmission characteristics of hydro-viscous clutch and reveal the distribution law of the flow field of the oil film. The computational-fluid-dynamics (CFD) simulation model of oil film with radial oil grooves between friction pairs is taken as the study object. Considering the air effects, the pressure field, two-phase distribution, transmission torque and temperature field of the oil film are analyzed comparatively by using the CFD technology. The results show that the presence of air changes the pressure and temperature distributions of the oil film. With increase of the absolute rotational speed, the air volume fraction increases and the radius value of the air-liquid boundary decreases under condition of constant speed difference, which makes the coverage rate of the oil film on the surface of the friction disks reduce and the transmission torque of the oil film decrease. These simulation results are attributed to the study of hydro-viscous-drive and its applications. This paper also can provide a theoretical basis for the mechanism of power transmission through oil film in the presence of air effects.


Sign in / Sign up

Export Citation Format

Share Document