Indoor thermal comfort research on the hybrid system of radiant cooling and dedicated outdoor air system

2013 ◽  
Vol 7 (2) ◽  
pp. 155-160 ◽  
Author(s):  
Weiliang Wang ◽  
Zhe Tian
Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7825
Author(s):  
Pradeep Shakya ◽  
Gimson Ng ◽  
Xiaoli Zhou ◽  
Yew Wah Wong ◽  
Swapnil Dubey ◽  
...  

A hybrid cooling system which combines natural ventilation with a radiant cooling system for a hot and humid climate was studied. Indirect evaporative cooling was used to produce chilled water at temperatures slightly higher than the dew point. With this hybrid system, the condensation issue on the panel surface of a chilled ceiling was overcome. A computational fluid dynamics (CFD) model was employed to determine the cooling load and the parameters required for thermal comfort analysis for this hybrid system in an office-sized, well-insulated test room. Upon closer investigation, it was found that the thermal comfort by the hybrid system was acceptable only in limited outdoor conditions. Therefore, the hybrid system with a secondary fresh air supply system was suggested. Furthermore, the energy consumptions of conventional all-air, radiant cooling, and hybrid systems including the secondary air supply system were compared under similar thermal comfort conditions. The predicted results indicated that the hybrid system saves up to 77% and 61% of primary energy when compared with all-air and radiant cooling systems, respectively, while maintaining similar thermal comfort.


2020 ◽  
Vol 15 (3) ◽  
pp. 163-170
Author(s):  
Rajan KC ◽  
Hom Bahadur Rijal ◽  
Masanori Shukuya ◽  
Kazui Yoshida

The energy use in residential dwellings has been increasing due to increasing use of modern electric appliances to make the lifestyle easier, entertaining and better. One of the major purposes of indoor energy use is for improving indoor thermal environment for adjusting thermal comfort. Along with the use of passive means like the use of mechanical devices, the occupants in any dwellings use active means such as the use of natural ventilation, window opening, and clothing adjustment. In fact, the use of active means when the outdoor environment is good enough might be more suitable to improve indoor thermal environment than the use of mechanical air conditioning units, which necessarily require electricity. Therefore, the people in developing countries like Nepal need to understand to what extent the occupants can use active means to manage their own indoor thermal comfort. The use of active means during good outdoor environment might be an effective way to manage increasing energy demand in the future. We have made a field survey on the occupants’ adaptive behaviors for thermal comfort in a Japanese condominium equipped with Home Energy Management System (HEMS). Online questionnaire survey was conducted in a condominium with 356 families from November 2015 to October 2016 to understand the occupants’ behaviors. The number of 17036 votes from 39 families was collected. The indoor air temperature, relative humidity and illuminance were measured at the interval of 2-10 minutes to know indoor thermal environmental conditions. The occupants were found using different active behaviors for thermal comfort adjustments even in rather harsh summer and winter. Around 80% of the occupants surveyed opened windows when the outdoor air temperature was 30⁰C in free running (FR) mode and the clothing insulation was 0.93 clo when the outdoor air temperature was 0⁰C. The result showed that the use of mechanical heating and cooling was not necessarily the first priority to improve indoor thermal environment. Our result along with other results in residential buildings showed that the adaptive behaviors of the occupants are one of the primary ways to adjust indoor thermal comfort. This fact is important in enhancing the energy saving building design.


2019 ◽  
Vol 203 ◽  
pp. 109448 ◽  
Author(s):  
Kuniaki Mihara ◽  
Chandra Sekhar ◽  
Yuichi Takemasa ◽  
Bertrand Lasternas ◽  
Kwok Wai Tham

2020 ◽  
pp. 1420326X2096114
Author(s):  
S. Y. Qin ◽  
X. Cui ◽  
C. Yang ◽  
L. W. Jin

Radiant system has been increasingly applied in buildings due to its good thermal comfort and energy-saving potential. In this research, a simplified predicted mean vote (PMV) model and sensible cooling load equation were proposed based on human thermal comfort. Simulations were carried out using Airpak to explore relationships among thermal comfort characteristics, design and operation parameters. Results show that radiant surface temperature, fresh-air supply temperature and the area ratio are correlated approximately linearly with the indoor air temperature, while the relative humidity has little effect on the indoor air temperature. The indoor air velocity in the simulated environment was no more than 0.15 m/s, satisfying the requirements of limit values in the occupied zone. The results indicate that the optimum radiant surface temperature ( tc) is 19°C to 23°C when fresh-air supply temperature ( ts) is 26°C. The relative humidity ( φ) should be maintained at 50% to 70%, and the area ratio of radiant panels to total surfaces ( k1) should be kept within 0.15 to 0.38 when the radiant surface temperature is 20°C and the fresh-air supply temperature is 26°C. The simplified PMV model and the sensible load equation can provide reference for panel design based on characteristics of radiant cooling panels with a dedicated fresh-air system.


2019 ◽  
Vol 111 ◽  
pp. 01087 ◽  
Author(s):  
Seong-Yong Cheon ◽  
Soo-Yeol Yoon ◽  
Su Liu ◽  
Jae-Weon Jeong

The proposed research presents a dedicated outdoor-air system (DOAS) integrated with a vacuumbased membrane dehumidifier (VMD). The primary objective of this study was to evaluate the energy-saving potential of the proposed VMD–DOAS combination. VMD–DOAS comprised a membrane-energy exchanger (MEE), dew-point indirect evaporative cooler (DP-IEC), and VMD. VMD possessed a characteristic by virtue of which the dehumidification process was isothermal; i.e., no temperature change was observed during the VMD process. While VMD served to control the dry-air supply, the required target temperature (i.e., 17 °C) was maintained via DP-IEC operation. The remaining sensible heat of the conditioned zone was controlled by the ceiling radiant cooling panel (CRCP). The load of the conditioned zone was driven by TRANSYS 18, and an engineering equation solver (EES) was used for evaluating the energy-saving potential of the proposed system with CRCP by comparing it against the variable-air-volume (VAV) system. Results of this study demonstrated that the proposed DOAS with CRCP consumed 37% less operating energy compared to the VAV system. This observed energy-saving potential of the proposed system was driven by reducing the dehumidification load and subsequent energy recovery by MEE.


Sign in / Sign up

Export Citation Format

Share Document