Thermal comfort analysis of radiant cooling panels with dedicated fresh-air system

2020 ◽  
pp. 1420326X2096114
Author(s):  
S. Y. Qin ◽  
X. Cui ◽  
C. Yang ◽  
L. W. Jin

Radiant system has been increasingly applied in buildings due to its good thermal comfort and energy-saving potential. In this research, a simplified predicted mean vote (PMV) model and sensible cooling load equation were proposed based on human thermal comfort. Simulations were carried out using Airpak to explore relationships among thermal comfort characteristics, design and operation parameters. Results show that radiant surface temperature, fresh-air supply temperature and the area ratio are correlated approximately linearly with the indoor air temperature, while the relative humidity has little effect on the indoor air temperature. The indoor air velocity in the simulated environment was no more than 0.15 m/s, satisfying the requirements of limit values in the occupied zone. The results indicate that the optimum radiant surface temperature ( tc) is 19°C to 23°C when fresh-air supply temperature ( ts) is 26°C. The relative humidity ( φ) should be maintained at 50% to 70%, and the area ratio of radiant panels to total surfaces ( k1) should be kept within 0.15 to 0.38 when the radiant surface temperature is 20°C and the fresh-air supply temperature is 26°C. The simplified PMV model and the sensible load equation can provide reference for panel design based on characteristics of radiant cooling panels with a dedicated fresh-air system.

2011 ◽  
Vol 243-249 ◽  
pp. 4905-4908
Author(s):  
Xue Min Sui ◽  
Xu Zhang ◽  
Guang Hui Han

Relative humidity is an important micro-climate parameter in radiant cooling environment. Based on the human thermal comfort model, this paper studied the effect on PMV index of relative humidity, and studied the relationship of low mean radiant temperature and relative humidity, drew the appropriate design range of indoor relative humidity for radiant cooling systems.The results show that high relative humidity can compensate for the impact on thermal comfort of low mean radiant temperature, on the premise of achieving the same thermal comfort requirements. However, because of the limited compensation range of relative humidity, together with the constraints for it due to anti-condensation of radiant terminal devices, the design range of relative humidity should not be improved, and it can still use the traditional air-conditioning design standards.


Author(s):  
Yuksel Guclu

Abstract In this study, the determination of the human thermal comfort situation in the Goller District (in the Mediterranean Region) of Turkey has been aimed. In the direction of the aim, the air temperature and relative humidity data of total 11 meteorology stations have been examined according to The Thermo-hygrometric Index (THI) and the New Summer Simmer Index (SSI). According to this, it has been determined that the thermal comfort conditions are not appropriate in the period of October-May on average monthly. The months of June and September are the most appropriate to almost all kinds of tourism and recreation activities in the outdoor in terms of thermal comfort. When THI and SSI indices’ values are evaluated together, the periods between 5th – 25th June and 29th August-16th September are the most appropriate periods in the study area on average in terms of the thermal comfort for the tourism and recreation activities in the outdoor. Keywords: Thermal comfort, human health, The Thermo-Hygrometric Index, The Summer Simmer Index, Goller District, Turkey.


2013 ◽  
Vol 68 ◽  
pp. 114-122 ◽  
Author(s):  
Weilin Cui ◽  
Guoguang Cao ◽  
Jung Ho Park ◽  
Qin Ouyang ◽  
Yingxin Zhu

ACTA IMEKO ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 221
Author(s):  
Nicole Morresi ◽  
Sara Casaccia ◽  
Marco Arnesano ◽  
Gian Marco Revel

This paper presents an approach to assess the measurement uncertainty of human thermal comfort by using an innovative method that comprises a heterogeneous set of data, made by physiological and environmental quantities, and artificial intelligence algorithms, using Monte Carlo method (MCM). The dataset is made up of heart rate variability (HRV) features, air temperature, air velocity and relative humidity. Firstly, MCM is applied to compute the measurement uncertainty of the HRV features: results have shown that among 13 participants, there are uncertainty values in the measurement of HRV features that ranges from ±0.01% to ±0.7 %, suggesting that the uncertainty can be generalized among different subjects. Secondly, MCM is applied by perturbing the input parameters of random forest (RF) and convolutional neural network (CNN) algorithm, trained to measure human thermal comfort. Results show that environmental quantities produce different uncertainty on the thermal comfort: RF has the highest uncertainty due to the air temperature (14 %), while CNN has the highest uncertainty when relative humidity is perturbed (10.5 %). A sensitivity analysis also shows that air velocity is the parameter that causes a higher deviation of thermal comfort


2012 ◽  
Vol 209-211 ◽  
pp. 376-379 ◽  
Author(s):  
Yu Hui Di ◽  
Jing Jiang

Through an actual test of the planting on the roof, observes the main climatic factors of roof surfaces about the the grass layer of green roof and the concrete roof.Study and analysis the variation of the temperature and the relative humidity of surface temperature and the air inside and outside during the daytime. Studies have shown that the application of green roof can change the temperature and humidity to decrease the temperature of the roof surface.Thereby reduces the indoor air temperature and drop the outdoor local relative humidity.


2020 ◽  
pp. 014459872096921
Author(s):  
Yanru Li ◽  
Enshen Long ◽  
Lili Zhang ◽  
Xiangyu Dong ◽  
Suo Wang

In the Yangtze River zone of China, the heating operation in buildings is mainly part-time and part-space, which could affect the indoor thermal comfort while making the thermal process of building envelope different. This paper proposed to integrate phase change material (PCM) to building walls to increase the indoor thermal comfort and attenuate the temperature fluctuations during intermittent heating. The aim of this study is to investigate the influence of this kind of composite phase change wall (composite-PCW) on the indoor thermal environment and energy consumption of intermittent heating, and further develop an optimization strategy of intermittent heating operation by using EnergyPlus simulation. Results show that the indoor air temperature of the building with the composite-PCW was 2–3°C higher than the building with the reference wall (normal foamed concrete wall) during the heating-off process. Moreover, the indoor air temperature was higher than 18°C and the mean radiation temperature was above 20°C in the first 1 h after stopping heating. Under the optimized operation condition of turning off the heating device 1 h in advance, the heat release process of the composite-PCW to the indoor environment could maintain the indoor thermal environment within the comfortable range effectively. The composite-PCW could decrease 4.74% of the yearly heating energy consumption compared with the reference wall. The optimization described can provide useful information and guidance for the energy saving of intermittently heated buildings.


2016 ◽  
pp. 67-98
Author(s):  
T. Agami Reddy ◽  
Jan F. Kreider ◽  
Peter S. Curtiss ◽  
Ari Rabl

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7825
Author(s):  
Pradeep Shakya ◽  
Gimson Ng ◽  
Xiaoli Zhou ◽  
Yew Wah Wong ◽  
Swapnil Dubey ◽  
...  

A hybrid cooling system which combines natural ventilation with a radiant cooling system for a hot and humid climate was studied. Indirect evaporative cooling was used to produce chilled water at temperatures slightly higher than the dew point. With this hybrid system, the condensation issue on the panel surface of a chilled ceiling was overcome. A computational fluid dynamics (CFD) model was employed to determine the cooling load and the parameters required for thermal comfort analysis for this hybrid system in an office-sized, well-insulated test room. Upon closer investigation, it was found that the thermal comfort by the hybrid system was acceptable only in limited outdoor conditions. Therefore, the hybrid system with a secondary fresh air supply system was suggested. Furthermore, the energy consumptions of conventional all-air, radiant cooling, and hybrid systems including the secondary air supply system were compared under similar thermal comfort conditions. The predicted results indicated that the hybrid system saves up to 77% and 61% of primary energy when compared with all-air and radiant cooling systems, respectively, while maintaining similar thermal comfort.


Technologies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 90
Author(s):  
Siliang Lu ◽  
Erica Cochran Hameen

Heating, ventilation and air-conditioning (HVAC) systems play a key role in shaping office environments. However, open-plan office buildings nowadays are also faced with problems like unnecessary energy waste and an unsatisfactory shared indoor thermal environment. Therefore, it is significant to develop a new paradigm of an HVAC system framework so that everyone could work under their preferred thermal environment and the system can achieve higher energy efficiency such as task ambient conditioning system (TAC). However, current task conditioning systems are not responsive to personal thermal comfort dynamically. Hence, this research aims to develop a dynamic task conditioning system featuring personal thermal comfort models with machine learning and the wireless non-intrusive sensing system. In order to evaluate the proposed task conditioning system performance, a field study was conducted in a shared office space in Shanghai from July to August. As a result, personal thermal comfort models with indoor air temperature, relative humidity and cheek (side face) skin temperature have better performances than baseline models with indoor air temperature only. Moreover, compared to personal thermal satisfaction predictions, 90% of subjects have better performances in thermal sensation predictions. Therefore, personal thermal comfort models could be further implemented into the task conditioning control of TAC systems.


Sign in / Sign up

Export Citation Format

Share Document