Numerical simulation research on response characteristics of surrounding rock for deep super-large section chamber under dynamic and static combined loading condition

Author(s):  
De-yuan Fan ◽  
Xue-sheng Liu ◽  
Yun-liang Tan ◽  
Shi-lin Song ◽  
Jian-guo Ning ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhi Lin ◽  
Xiang Chen ◽  
Hongyun Yang ◽  
Chongguo Cheng ◽  
Huasong Wang ◽  
...  

The construction of urban underground cross-interchange transfer subway stations often encounters the difficulties of shallow-buried, different surrounding rock, large spans and heights, congested road traffic, and surrounding buildings sensitive to the construction sequence. Therefore, there is a need for an underground project that controls the stability of underground space and ground subsidence. Based on the construction difficulties of a certain station (the maximum excavation area over 760 m2), this paper conducts a comprehensive selection design of the structure, construction mechanics response, and control technology of this type of interchange station structure and construction excavation. First of all, based on the design experience of large-scale underground transfer transportation engineering and taking full consideration of the stratum conditions, an “arch-wall” cross transfer structure method is proposed. The refined numerical analysis shows that the structure can fully utilize the stratum conditions to reduce the ground surface settlement. Then, in view of the stability of surrounding rock during the construction of a large section, based on the traditional large section excavation method, a construction method of “cross rock beam + heading method” was proposed. In order to verify the effect of the construction method, the three-dimensional detailed numerical model was used to simulate the construction conditions, and the mechanical response characteristics and displacement changes of surrounding rock under each excavation step are explored. Simultaneous interpreting with the traditional large section excavation method, the results show that the new method has advantages in controlling the stability of the surrounding rock. Meanwhile, in order to ensure the safe construction of the project, the self-developed multifunctional engineering test system for traffic tunnels is used to carry out a large-scale physical model experiment to simulate the entire process of the “arch-wall” cross transfer structure construction response characteristics. By analyzing the data of measuring points, the results show that the structure form and the excavation method cause the ground surface settlement, stress, and structural forces meet the requirements for safe construction. Finally, the station can be safely constructed under the new structure form and construction method. Therefore, the structure form and method proposed in this paper can be adapted to the large-scale underground structure under construction in complex environments.


2015 ◽  
Vol 9 (1) ◽  
pp. 450-456 ◽  
Author(s):  
Peng Wen-qing ◽  
Wang Xin-min ◽  
Wang Wei-jun

This paper is based on the large section inclined shaft crossing goaf of Pingdingshan No.6 Mine as engineering background, and aimed at solving the difficult supporting problem of fractured surrounding rock. After establishing and calculating the mechanical models of U-steel and inverted arch, the support’s vertical reaction force (N1) and horizontal counterforce (X1) are determined as 180.96 KN and 48.12 KN, while the maximum bending stress (σmax) and ultimate bearing capacity of the inverted arch are obtained as 375.59 Mpa and 0.27 Mpa. It shows that the deformation of surrounding rock is well controlled by the supporting structure. The numerical simulation model is built by using the software FLAC3D to analyze the stability of surrounding rock after supporting. The results suggest that the deformation of roof, floor and sides is reduced by 17%, 23% and 71% respectively after supporting with U-steel in the inclined shaft, and the accuracy of results has been verified by a field experiment. Therefore, the “U-steel+ pouring concrete + inverted arch + backwall grouting” technology can effectively control the damage of surrounding rock and improve the stability of surrounding rock.


2014 ◽  
Vol 580-583 ◽  
pp. 997-1000 ◽  
Author(s):  
Zhi Jie Sun

To research the deformation regularity of large section loess tunnel in construction procession with different construction methods, 3D Numerical Simulation is applied and the large-section loess tunnel of highway is taken as an example. Comparing deformation regularity of surrounding rock in three types of construction method conditions, the research results show that:The CRD method takes precedence in the condition of the convergence of surrounding rock is large. The both sides heading method takes precedence in the condition of ground surface settlement is large.


2021 ◽  
Vol 1838 (1) ◽  
pp. 012061
Author(s):  
Qihui Zhou ◽  
Zhanjun Huang ◽  
Yong Wu ◽  
Huipeng Zhang ◽  
Yufeng Shi ◽  
...  

2019 ◽  
Vol 136 ◽  
pp. 04023
Author(s):  
Ming Zhao ◽  
Ke Li ◽  
Hong Yan Guo ◽  
KaiCheng Hua

Based on the special geological conditions of a tunnel in Qingyuan section of Huizhou-Zhanzhou Expressway, FLAC3d numerical simulation software is used to simulate the rheological properties and instability of surrounding rock in large-section fully weathered sandstone section, and the stability and loss of surrounding rock are analyzed. The deformation of the dome and the face at steady state is analyzed. It is found that: 1) when the surrounding rock is in a stable state, the deformation curve of the dome is smooth. When the surrounding rock of the face is unstable, the front of the face appears ahead. Deformation should be first strengthened on the surrounding rock in front of the face. 2) The arched foot is an important part of the instability of the surrounding rock. In order to prevent the expansion of the collapsed part, the arched part should be reinforced. 3) In order to obtain the limit state of surrounding rock stability, the strength of surrounding rock is reduced, and the strength reduction coefficient corresponding to the displacement sudden point is taken as the safety factor of rock stability around the hole, and the stability safety coefficients of surrounding rock of each construction step are greater than 1.2. 4) The dynamic standard values of deformation control in the whole construction stage are obtained by analyzing the deformation curves of each data monitoring point with time in the corresponding time period of each construction step.


2013 ◽  
Vol 295-298 ◽  
pp. 2980-2984
Author(s):  
Xiang Qian Wang ◽  
Da Fa Yin ◽  
Zhao Ning Gao ◽  
Qi Feng Zhao

Based on the geological conditions of 6# coal seam and 8# coal seam in Xieqiao Coal Mine, to determine reasonable entry layout of lower seam in multi-seam mining, alternate internal entry layout, alternate exterior entry layout and overlapping entry layout were put forward and simulated by FLAC3D. Then stress distribution and displacement characteristics of surrounding rock were analyzed in the three ways of entry layout, leading to the conclusion that alternate internal entry layout is a better choice for multi-seam mining, for which makes the entry located in stress reduce zone and reduces the influence of abutment pressure of upper coal seam mining to a certain extent,. And the mining practice of Xieqiao Coal Mine tested the results, which will offer a beneficial reference for entry layout with similar geological conditions in multi-seam mining.


2012 ◽  
Vol 524-527 ◽  
pp. 360-363
Author(s):  
Shou Yi Dong ◽  
Qi Tao Duan ◽  
Fu Lian He ◽  
Qi Li ◽  
Hong Jun Jiang

The coal side deformation and sliding can not be effectively controlled by use of the traditional bolt or cable support in the high stress crushed surrounding rock and large section roadway. For solving this problem, the new prestressed truss support technology is put forward, and its supporting principles of roof and two walls are stated. The mechanical model of cable-channel steel truss is established, and then the tensile strength of the cable and the maximum deflection of the channel steel are derived. By way of field investigation, mechanics theory analysis and actual production condition, the scheme is defined and applied in the replacement roadway. Measurement results of surrounding rock behavior show that the coal side displacement is no more than 254mm and the roof convergence is less than 172mm. Apparent economic and technical profits have been achieved.


Sign in / Sign up

Export Citation Format

Share Document