scholarly journals Sulfation Roasting Mechanism for Spent Lithium-Ion Battery Metal Oxides Under SO2-O2-Ar Atmosphere

JOM ◽  
2019 ◽  
Vol 71 (12) ◽  
pp. 4473-4482 ◽  
Author(s):  
Junjie Shi ◽  
Chao Peng ◽  
Min Chen ◽  
Yun Li ◽  
Hurman Eric ◽  
...  

Abstract Sulfation roasting followed by water leaching has been proposed as an alternative route for recycling valuable metals from spent lithium-ion batteries (LIBs). In the present work, the reaction mechanism of the sulfation roasting of synthetic LiCoO2 was investigated by both thermodynamic calculations and roasting experiments under flowing 10% SO2-1% O2-89% Ar gas atmosphere at 700°C. The products and microstructural evolution processes were characterized by x-ray diffraction, scanning electron microscope and energy dispersive x-ray spectrometer, and atomic absorption spectroscopy. It was confirmed that Co3O4 was formed as an intermedia product, and the final roasted products were composed by Li2SO4, Li2Co(SO4)2, and CoO. The leaching results indicated that 99.5% Li and 17.4% Co could be recovered into water after 120 min of roasting. The present results will provide the basis and solid guidelines for recycling of Li and Co from spent LIBs.

Author(s):  
A. R. Landa Canovas ◽  
L.C. Otero Diaz ◽  
T. White ◽  
B.G. Hyde

X-Ray diffraction revealed two intermediate phases in the system MnS+Er2S3,:MnEr2S4= MnS.Er2S3, and MnEr4S7= MnS.2Er2S3. Their structures may be described as NaCl type, chemically twinned at the unit cell level, and isostructural with CaTi2O4, and Y5S7 respectively; i.e. {l13} NaCl twin band widths are (4,4) and (4,3).The present study was to search for structurally-related (twinned B.) structures and or possible disorder, using the more sensitive and appropiate technigue of electron microscopy/diffraction.A sample with nominal composition MnEr2S4 was made by heating Mn3O4 and Er2O3 in a graphite crucible and a 5% H2S in Ar gas flow at 1500°C for 4 hours. A small amount of this material was thenannealed, in an alumina crucible, contained in sealed evacuated silica tube, for 24 days at 1100°C. Both samples were studied by X-ray powder diffraction, and in JEOL 2000 FX and 4000 EX microscopes.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3502
Author(s):  
Fangzhou Song ◽  
Masayoshi Uematsu ◽  
Takeshi Yabutsuka ◽  
Takeshi Yao ◽  
Shigeomi Takai

LATP-based composite electrolytes were prepared by sintering the mixtures of LATP precursor and La2O3 nano-powder. Powder X-ray diffraction and scanning electron microscopy suggest that La2O3 can react with LATP during sintering to form fine LaPO4 particles that are dispersed in the LATP matrix. The room temperature conductivity initially increases with La2O3 nano-powder addition showing the maximum of 0.69 mS∙cm−1 at 6 wt.%, above which, conductivity decreases with the introduction of La2O3. The activation energy of conductivity is not largely varied with the La2O3 content, suggesting that the conduction mechanism is essentially preserved despite LaPO4 dispersion. In comparison with the previously reported LATP-LLTO system, although some unidentified impurity slightly reduces the conductivity maximum, the fine dispersion of LaPO4 particles can be achieved in the LATP–La2O3 system.


2012 ◽  
Vol 736 ◽  
pp. 127-132
Author(s):  
Kuldeep Rana ◽  
Anjan Sil ◽  
Subrata Ray

Lithium alloying compounds as an anode materials have been a focused for high capacity lithium ion battery due to their highenergy capacity and safety characteristics. Here we report on the preparation of graphite-tin composite by using ball-milling in liquid media. The composite material has been characterized by scanning electron microscope, energy depressive X-ray spectroscopy, X-ray diffraction and Raman spectra. The lithium-ion cell made from graphite-tin composite presented initial discharge capacity of 1065 mAh/g and charge capacity 538 mAh/g, which becomes 528 mAh/g in the second cycle. The composite of graphite-tin with higher capacity compared to pristine graphite is a promising alternative anode material for lithium-ion battery.


2021 ◽  
Vol 507 ◽  
pp. 230253
Author(s):  
Harry Charalambous ◽  
Daniel P. Abraham ◽  
Alison R. Dunlop ◽  
Stephen E. Trask ◽  
Andrew N. Jansen ◽  
...  
Keyword(s):  

2013 ◽  
Vol 787 ◽  
pp. 58-64 ◽  
Author(s):  
Xiang Feng Li ◽  
Zhao Zhang ◽  
Fang Liu ◽  
Shu Ping Zheng

The LiFePO4/C composites with different morphology are synthesized by a novel glucose assisted hydrothermal method at various glucose concentrations (from 0 to 0.25mol/L) and the insoluble lithium source Li2CO3, (NH4)2Fe (SO4)2·6H2O and (NH4)2HPO4(n (Li):n (Fe):n (P)=1:1:1) are used as raw materials. The structure, morphology, thermal performance and electrochemical properties of the synthesized composites are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), thermogravimetry/differential scanning calorimetry (TG-DSC), galvanostatic charge/discharge tests and cyclic voltammetry (CV). The results show that the LiFePO4/C synthesized with 0.125mol/L glucose has the relatively small particles size (0.1~0.5μm) and the well spherical morphology. The optimal sample exhibits a high discharge capacity of 160.0mAh/g at the first cycle and exhibits a good reversibility and stability in CV tests.


2007 ◽  
Vol 336-338 ◽  
pp. 463-465 ◽  
Author(s):  
Xin Lu Li ◽  
Fei Yu Kang ◽  
Yong Ping Zheng ◽  
Xiu Juan Shi ◽  
Wan Ci Shen

Partial oxygen in LiNi0.7Co0.3O2 was replaced by chlorine to form LiNi0.7Co0.3O1.9Cl0.1. Phase structure of LiNi0.7Co0.3O1.9Cl0.1 was identified as a pure hexagonal lattice of α-NaFeO2 type by X-ray diffraction. Discharge capacity of LiNi0.7Co0.3O1.9Cl0.1 was 202 mAh/g in initial cycle at 15 mA/g current density in 2.5- 4.3 V potential window. The constant current charge/discharge experiments and cyclic voltammograms showed that chlorine addition was effective to improve reversible capacity and cycle stability of LiNi0.7Co0.3O2.


Author(s):  
А.Я. Пак ◽  
Г.Я. Мамонтов

AbstractWe describe a method of obtaining ultrafine boron carbide (B_13C_2) powder using the effect of a dc electric arc on a mixture of initial reactants containing carbon and boron. A peculiarity of the proposed method is that it can be implemented using arc discharge operating in open air without any vacuum equipment and protective inert gas atmosphere. X-ray diffraction data showed that the synthesized product in the general case contained three crystalline phases: boron carbide (B_13C_2), graphite (C), and boron oxide (B_2O_3). Electron-microscopic examination showed that the average size of boron carbide particles ranged from ~50 nm to ~2 μm.


2017 ◽  
Vol 2 (2) ◽  
pp. 89 ◽  
Author(s):  
A.A. Shoppert ◽  
I.V. Loginova ◽  
L.I. Chaikin ◽  
D.A. Rogozhnikov

<p>Fly ash, composed of mullite, hematite, amorphous silica and quartz, is a promising source for the recovery of alumina and silica. Desilication with help of NaOH and alkali fusion-leaching method and utilization of alumina and silica in the fly ash for preparation of sodalite and silica white were explored in this research. The samples were characterized by using wet chemical analysis and X-ray diffraction. The optimal extraction of SiO<sub>2</sub> from Reftinskaya power plant fly ash was 46.2% with leaching at 95 <sup>o</sup>C for 3 h. Sodalite was synthesized at 200 °C for 1 h followed water leaching at 95 °C for 1 h. Silica white with specific surface area 180-220 m2/g was prepared by carbonation of the Na<sub>2</sub>SiO<sub>3</sub> solution at 40 <sup>o</sup>C for 90-120 min. The as-prepared silica has a purity of 98,8%.</p><p>The proposed method is suitable for the comprehensive utilization of the fly ash.</p>


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 281
Author(s):  
Daniil Aleksandrov ◽  
Pavel Novikov ◽  
Anatoliy Popovich ◽  
Qingsheng Wang

Solid-state reaction was used for Li7La3Zr2O12 material synthesis from Li2CO3, La2O3 and ZrO2 powders. Phase investigation of Li7La3Zr2O12 was carried out by x-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS) methods. The thermodynamic characteristics were investigated by calorimetry measurements. The molar heat capacity (Cp,m), the standard enthalpy of formation from binary compounds (ΔoxHLLZO) and from elements (ΔfHLLZO), entropy (S0298), the Gibbs free energy of the Li7La3Zr2O12 formation (∆f G0298) and the Gibbs free energy of the LLZO reaction with metallic Li (∆rGLLZO/Li) were determined. The corresponding values are Cp,m = 518.135 + 0.599 × T − 8.339 × T−2, (temperature range is 298–800 K), ΔoxHLLZO = −186.4 kJ·mol−1, ΔfHLLZO = −9327.65 ± 7.9 kJ·mol−1, S0298 = 362.3 J·mol−1·K−1, ∆f G0298 = −9435.6 kJ·mol−1, and ∆rGLLZO/Li = 8.2 kJ·mol−1, respectively. Thermodynamic performance shows the possibility of Li7La3Zr2O12 usage in lithium-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document