An EBSD Study on the Stability of Retained Austenite in Low-Si TRIP Steels During Uniaxial Tension

JOM ◽  
2021 ◽  
Author(s):  
Fayez Al-Harbi ◽  
Azdiar A. Gazder ◽  
Elena Pereloma
2010 ◽  
Vol 638-642 ◽  
pp. 3579-3584
Author(s):  
Lie Zhao ◽  
Corinna Thomser ◽  
Kirsten Schneider ◽  
Wolfgang Bleck ◽  
Jilt Sietsma

Temperature development during plastic deformation affects the stability of retained austenite and thus the mechanical properties in transformation-induced plasticity (TRIP) steels. In this work, we used a thermo-camera to monitor the temperature development during a step-wise tensile test of an Al-containing multiphase TRIP steel. The tensile tests were performed by loading the specimen at six straining rates ranging from 5 to 30 s-1 to a stress of 700 MPa and then holding for 15 min, followed by further loading at 50 s-1 until fracture. It is found that temperature increases about 13 – 18 °C during the first loading process and drops back to room temperature with a time-constant of around 2 min. The increment of temperature increases with increasing straining rate. The temperature increases around 30 °C during the second loading process. The distribution of temperature over the specimen surface is found to be rather homogeneous along the longitudinal direction in most cases, except for the ending points of two loading processes. The measurement of temperature development is found to be consistent with previous numerical simulation on the temperature development under constant stress in TRIP steels.


2012 ◽  
Vol 508 ◽  
pp. 128-132 ◽  
Author(s):  
Eui Pyo Kwon ◽  
Shun Fujieda ◽  
Kozo Shinoda ◽  
Shigeru Suzuki

In this Study, Influences of P on the Microstructure, Mechanical Properties, and Retained Austenite Characteristics in Transformation Induced Plasticity (TRIP) Steels Were Investigated. Microstructure of 0.2mass%P Containing TRIP Steel Was Inhomogeneous and it Resulted in Deterioration of the Mechanical Properties. Retained Austenite Characteristics such as Volume Fraction and Carbon Concentration Were Also Affected by P. The Stability of Retained Austenite in P Containing TRIP Steel Was Different from that in P-Free TRIP Steel. Such Difference in the Stability of Retained Austenite Was Attributed to the Effect of the Carbon Concentration in Retained Austenite as Well as their Different Microstructure.


2010 ◽  
Vol 638-642 ◽  
pp. 3374-3379 ◽  
Author(s):  
Hiroshi Matsuda ◽  
Hisata Noro ◽  
Yasunobu Nagataki ◽  
Yoshihiro Hosoya

Industrial low alloy TRIP sheet steels contain blocky and lath-shaped retained austenite. In the present study, transformation behaviour of blocky and lath-shaped retained austenite during straining was investigated to clarify its effect on mechanical properties. Two types of TRIP steels containing almost the same amount but the different morphology of retained austenite were used. A steel containing large amount of lath-shaped retained austenite exhibits superior ductility, and sustains high work-hardenability in a high strain region. On the contrast, a steel containing large amount of blocky retained austenite exhibits low ductility.  The work-hardenability increased steeply to the maximum at a low strain region, and then reduced in a high strain region. The stability of the blocky austenite has been found to be poor with respected to martensite transformation. The lath-shaped retained austenite remains until a high strain region whereas the blocky retained austenite transformed into martensite in a low strain region. Carbon content was higher in the lath-shaped retained austenite than in the blocky retained austenite. Stability of retained austenite is, however, inexplicable only by the carbon content, and would be affected by the different morphology and the resulting restraint conditions.


2011 ◽  
Vol 1296 ◽  
Author(s):  
Kemal Davut ◽  
Stefan Zaefferer

ABSTRACTSteels with transformation induced plasticity (TRIP) offer an excellent combination of high strength and ductility. The transformation of meta-stable austenite into martensite during straining leads to strong local hardening and prevents early localization of strain. Therefore, the mechanical properties of TRIP steels, including the damage resistance depend to a significant extent on the stability of retained austenite. The aim of this study was to evaluate the effect of texture on the stability of retained austenite. In order to compare the changes in both tension and compression the steel was deformed by a micro 3-point-bending device. The texture development upon bending was followed by electron backscatter diffraction (EBSD) technique. Based on a simple analysis using the relation between face centered cube (FCC) and body centered cube (BCC) shear geometries theoretically expected changes of texture components due to deformation are proposed. Using the results of this analysis the observed changes of the austenite texture due to deformation could be distinguished from those due to transformation, by comparing the experimental results with the theoretically expected behavior. From this comparison, austenite grains with “Brass (B) {011} <211>” and “Goss (G) {110} <100>” texture components were found to transform into martensite much easier than differently oriented grains.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 458
Author(s):  
Ioanna Papadioti ◽  
Ilias Bellas ◽  
Maria-Ioanna T. Tzini ◽  
Peter I. Christodoulou ◽  
Nikolaos Aravas

A multiscale investigation of the microstructure and the mechanical behavior of TRIP steels is presented. A multi-phase field model is employed to predict the microstructure of a low-alloy TRIP700 steel during a two-stage heat treatment. The resulting stability of retained austenite is examined through the M s σ temperature. The phase field results are experimentally validated and implemented into a model for the kinetics of retained austenite during strain-induced transformation. The kinetics model is calibrated by using experimental data for the evolution of the martensite volume fraction in uniaxial tension. The transformation kinetics model is used together with homogenization methods for non-linear composites to develop a constitutive model for the mechanical behavior of the TRIP steel. A methodology for the numerical integration of the constitutive equations is developed and the model is implemented in a general-purpose finite element program (ABAQUS). Necking of a bar in uniaxial tension is simulated and “forming limit diagrams” (FLDs) for sheets made of TRIP steels are calculated. The models developed provide an integrated simulation toolkit for the computer-assisted design of TRIP steels and can be used to translate mechanical property requirements into optimised microstructural characteristics and to identify the appropriate processing routes.


1999 ◽  
Vol 70 (11) ◽  
pp. 466-471 ◽  
Author(s):  
Apostolos N. Vasilakos ◽  
Kostas Papamantellos ◽  
Gregory N. Haidemenopoulos ◽  
Wolfgang Bleck

2013 ◽  
Vol 85 (2) ◽  
pp. 143-154 ◽  
Author(s):  
Naqiong Zhu ◽  
Qihao Wu ◽  
Yanlin He ◽  
Xiaogang Lu ◽  
Lin Li ◽  
...  

2017 ◽  
Vol 741 ◽  
pp. 36-41 ◽  
Author(s):  
Takayuki Yamashita ◽  
Norimitsu Koga ◽  
Osamu Umezawa

The tensile properties and the stability of retained austenite in TRIP steels with different volume fraction of retained austenite have been studied at low temperature. The steels showed a good valance of strength and ductility at 193 K. Their work-hardening rates were decreased linearly and kept a high value in the high strain regime at 193 K. The retained austenite was mostly transformed into martensite less than 10% strain at 193 K.


Sign in / Sign up

Export Citation Format

Share Document