scholarly journals TRIP Steels: A Multiscale Computational Simulation and Experimental Study of Heat Treatment and Mechanical Behavior

Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 458
Author(s):  
Ioanna Papadioti ◽  
Ilias Bellas ◽  
Maria-Ioanna T. Tzini ◽  
Peter I. Christodoulou ◽  
Nikolaos Aravas

A multiscale investigation of the microstructure and the mechanical behavior of TRIP steels is presented. A multi-phase field model is employed to predict the microstructure of a low-alloy TRIP700 steel during a two-stage heat treatment. The resulting stability of retained austenite is examined through the M s σ temperature. The phase field results are experimentally validated and implemented into a model for the kinetics of retained austenite during strain-induced transformation. The kinetics model is calibrated by using experimental data for the evolution of the martensite volume fraction in uniaxial tension. The transformation kinetics model is used together with homogenization methods for non-linear composites to develop a constitutive model for the mechanical behavior of the TRIP steel. A methodology for the numerical integration of the constitutive equations is developed and the model is implemented in a general-purpose finite element program (ABAQUS). Necking of a bar in uniaxial tension is simulated and “forming limit diagrams” (FLDs) for sheets made of TRIP steels are calculated. The models developed provide an integrated simulation toolkit for the computer-assisted design of TRIP steels and can be used to translate mechanical property requirements into optimised microstructural characteristics and to identify the appropriate processing routes.

2021 ◽  
Vol 1016 ◽  
pp. 732-737
Author(s):  
Junya Kobayashi ◽  
Hiroto Sawayama ◽  
Naoya Kakefuda ◽  
Goroh Itoh ◽  
Shigeru Kuraoto ◽  
...  

Various high strength steel sheets for weight reduction and safety improvement of vehicles have been developed. TRIP-aided steel with transformation induced plasticity of the retained austenite has high strength and ductility. Conventional TRIP-aided steels are subjected to austempering process after austenitizing. Generally, elongation and formability of TRIP-aided steel are improved by finely dispersed retained austenite in BCC phase matrix. The finely dispersed retained austenite and grain refinement of TRIP-aided steel can be achieved by hot rolling with heat treatment. Therefore, the improvement of mechanical properties of TRIP-aided steel is expected from the manufacturing process with hot rolling and then isothermal transformation process. In this study, thermomechanical heat treatment is performed by combining hot rolling and isothermal holding as the manufacturing process of TRIP-aided steel sheets. The complex phase matrix is obtained by hot rolling and then isothermal holding. Although the hardness of the hot rolled and isothermal held TRIP-aided steel is decreased, the volume fraction of retained austenite is increased.


2010 ◽  
Vol 150-151 ◽  
pp. 118-122
Author(s):  
Fu Xian Zhu ◽  
Ming Ya Zhang ◽  
Dong Sheng Zheng

Two-stage heat treatment process which has guiding significance for continuous annealing TRIP steel producing was applied in this research. Different matrixes such as polygonal ferrite matrix, bainite ferrite matrix and annealed martenite matrix were obtained through different heat treatment processes. Compared the transformation-induced plasticity (TRIP) behaviors of three different tested samples,and the corresponding process for required product properties can be chosen. It was found that the needle-like retained austenite obtained in AMT steel was isolated from other microstructures while the retained austenite in the other two samples appeared to be equiaxed or network structure. The elongation, yield ratio and stability of retained austenite in AMT steel were all higher than that in PFT or BFT steels. BFT steel possesses highest tensile strength and lowest elongation while the yield ratio, RA content and carbon concentration in RA were all lowest for PFT steel.


2017 ◽  
Vol 270 ◽  
pp. 239-245
Author(s):  
Dagmar Bublíková ◽  
Štěpán Jeníček ◽  
Kateřina Opatová ◽  
Bohuslav Mašek

Today’s advanced steels are required to possess high strength and ductility. This can be accomplished by producing appropriate microstructures with a certain volume fraction of retained austenite. The resulting microstructure depends on material’s heat treatment and alloying. High ultimate strengths and sufficient elongation levels can be obtained by various methods, including quenching and partitioning (Q&P process). The present paper introduces new procedures aimed at simplifying this process with the use of material-technological modelling. Three experimental steels have been made and cast for this investigation, whose main alloying additions were manganese, silicon, chromium, molybdenum and nickel. The purpose of manganese addition was to depress the Ms and Mf temperatures. The Q&P process was carried out in a thermomechanical simulator for better and easier control. The heat treatment parameters were varied between the sequences and their effect on microstructure evolution was evaluated. They included the cooling rate, partitioning temperature and time at partitioning temperature. Microstructures including martensite with strength levels of more than 2000 MPa and elongation of 10–15 % were obtained.


2017 ◽  
Vol 907 ◽  
pp. 50-55
Author(s):  
Yakup Yürektürk ◽  
Murat Baydogan

In this paper, austempering heat treatment was applied to a new generation high silicon GJS 600-10 grade ductile iron with an initial ferritic matrix. Different austempering temperatures of 270, 330 and 390°C were applied after austenitizing at 975°C for 120 min. Depending on the austempering temperatures, lower and upper ausferritic microstructures were obtained. Results showed that volume fraction of the retained austenite in the ausferritic microstructures, which was estimated by VSM technique is well correlated with those estimated by XRD technique.


2005 ◽  
Vol 500-501 ◽  
pp. 461-470 ◽  
Author(s):  
Jiří Kliber ◽  
Bohuslav Mašek ◽  
Ondrej Zacek ◽  
H. Staňková

Transformation induced plasticity (TRIP) steel combines high strength and high ductility that makes it particularly suitable for forming. Martensite within a ferrite matrix is usually obtained either by continuous casting of slabs followed by hot rolling (which is the fastest method, hence the most economical one, producing, however, relatively thick products) or by the continuous casting of slabs followed by hot rolling, cold rolling and annealing (the method used for thin products). High cooling rates, low coiling temperatures and low reduction during hot deformation were generally found to suppress the formation of polygonal ferrite and promote the presence of retained austenite. This paper focuses on development and modifications of two CMnSi-based TRIP steels with 0,23 % C;1,4 % Mn; 1,9 % Si; ( 0,08 % Nb) by means of laboratory thermomechanical processing. Description of experimental devices for the analysis of transformation plasticity under tensioncompression loading is given. Experiments were carried out on the simulator for thermaldeformation cycles SMITWELD and TANDEM was used for thermomechanical processing on the laboratory rolling mill. The maximum volume fraction of retained austenite and the resulting optimum combination of tensile strength and ductility were achieved in testing heats. Special attention was paid to volume fraction changes of single phases and to changes in morphology of phases. The results suggest that rather short isothermal bainite transformation times are sufficient to obtain TRIP microstructure. The influence of parameters of thermomechanical processing such as the amount of strain, forming temperature and austenitization time and temperature on microstructures of TRIP steels were evaluated.


2012 ◽  
Vol 508 ◽  
pp. 128-132 ◽  
Author(s):  
Eui Pyo Kwon ◽  
Shun Fujieda ◽  
Kozo Shinoda ◽  
Shigeru Suzuki

In this Study, Influences of P on the Microstructure, Mechanical Properties, and Retained Austenite Characteristics in Transformation Induced Plasticity (TRIP) Steels Were Investigated. Microstructure of 0.2mass%P Containing TRIP Steel Was Inhomogeneous and it Resulted in Deterioration of the Mechanical Properties. Retained Austenite Characteristics such as Volume Fraction and Carbon Concentration Were Also Affected by P. The Stability of Retained Austenite in P Containing TRIP Steel Was Different from that in P-Free TRIP Steel. Such Difference in the Stability of Retained Austenite Was Attributed to the Effect of the Carbon Concentration in Retained Austenite as Well as their Different Microstructure.


2007 ◽  
Vol 539-543 ◽  
pp. 4321-4326 ◽  
Author(s):  
L. Zhao ◽  
Niels H. van Dijk ◽  
E.R. Peekstok ◽  
Ojin Tegus ◽  
Ekkes Brück ◽  
...  

The present work investigates the influence of phosphorus addition on the size distribution of retained austenite in TRIP steels containing 0.01%, 0.09% and 0.14% phosphorus. The size of retained austenite is measured by means of neutron depolarization technique and optical microscopy. It is found that the addition of phosphorous increases the size of the larger intergranular and inter-ferritic austenite grains and therefore also increases the volume fraction of retained austenite due to the strengthening effect of phosphorous on the surrounding ferrite and bainite grains. For all phosphorous additions the most frequently observed austenite size is around 0.2 μm, which is probably corresponds to the interlath film-type retained austenite. The average grain size from the neutron depolarization technique agrees in general with that from the optical microscopy and it is suggested that the accuracy can be improved by further development of the data analysis by taking into account the preferred shape and orientation of the austenite grains.


2017 ◽  
Vol 62 (3) ◽  
pp. 1485-1491 ◽  
Author(s):  
L. Kučerová ◽  
K. Opatová ◽  
J. Káňa ◽  
H. Jirková

AbstractThe effect of processing parameters on the final microstructure and properties of advanced high strength CMnSiNb steel was investigated. Several processing strategies with various numbers of deformation steps and various cooling schedules were carried out, namely heat treatment without deformation, conventional quenching and TRIP steel processing with bainitic hold or continuous cooling. Obtained multiphase microstructures consisted of the mixture of ferrite, bainite, retained austenite and M-A constituent. They possessed ultimate tensile strength in the range of 780-970 MPa with high ductility A5mmabove 30%. Volume fraction of retained austenite was for all the samples around 13%. The only exception was reference quenched sample with the highest strength 1186 MPa, lowest ductility A5mm= 20% and only 4% of retained austenite.


2013 ◽  
Vol 58 (2) ◽  
pp. 563-568
Author(s):  
R. Dabrowski ◽  
E. Rozniata ◽  
R. Dziurka

The results of a microstructure and hardness investigations of a new hypereutectoid Mn-Cr-Mo-V steel, imitating by its chemical composition tool steels, are presented in the paper. The microstructure as well hardness changes, caused by austenitising and tempering temperatures were assessed, for samples quenched and sub-quenched in liquid nitrogen, directly after the quenching treatment. Additionally, the influence of the tempering temperature on the volume fraction of the retained austenite was estimated. New hypereutectoid steel, after an appropriate heat treatment obtained the relevant hardness of the tools used in the cold and hot working proces. It was indicated that the steel hardness increases with the increases of the austenitising temperature. At 800ºC the hardness of the quenched samples were equal 895HV, and for the sub-quenched samples 937HV. The maximum hardness, after tempering (746HV), was found at a temperature of 520ºC. It will be possible, in future, to apply this obtained investigation results in designing chemical compositions and microstructures of the new hypereutectoid alloyed steels of properties required by their users.


2010 ◽  
Vol 654-656 ◽  
pp. 286-289 ◽  
Author(s):  
Sea Woong Lee ◽  
Kyoo Young Lee ◽  
Bruno C. De Cooman

Ultra-fine grained TRIP steels (UFG-TRIP) containing 6wt%Mn were produced by intercritical annealing. An ultra-fine grained microstructure with a grain size less than 1μm was obtained. The formation mechanism of the high volume fraction of retained austenite was investigated by dilatometry, XRD and magnetic saturation. The fraction of retained austenite was strongly dependent on the annealing temperature. The tensile properties were also found to be strongly influenced by the annealing temperature with poorer mechanical properties being observed at higher annealing temperatures. It was found that the stabilization of the retained austenite was both a composition and size-effect, made possible by the grain refinement due to the reversely transformed martensite.


Sign in / Sign up

Export Citation Format

Share Document