Role of Cardiac Fibroblasts in Cardiac Injury and Repair

Author(s):  
Maoying Han ◽  
Bin Zhou
2015 ◽  
Vol 15 (2) ◽  
pp. 117-129 ◽  
Author(s):  
Slava Epelman ◽  
Peter P. Liu ◽  
Douglas L. Mann

2021 ◽  
Author(s):  
Nicholas W. Chavkin ◽  
Soichi Sano ◽  
Ying Wang ◽  
Kosei Oshima ◽  
Hayato Ogawa ◽  
...  

AbstractBackgroundA hallmark of heart failure is cardiac fibrosis, which results from the injury-induced differentiation response of resident fibroblasts to myofibroblasts that deposit extracellular matrix. During myofibroblast differentiation, fibroblasts progress through polarization stages of early pro-inflammation, intermediate proliferation, and late maturation, but the regulators of this progression are poorly understood. Planar cell polarity receptors, receptor tyrosine kinase like orphan receptor 1 and 2 (Ror1/2), can function to promote cell differentiation and transformation. In this study, we investigated the role of the Ror1/2 in a model of heart failure with emphasis on myofibroblast differentiation.Methods and ResultsThe role of Ror1/2 during cardiac myofibroblast differentiation was studied in cell culture models of primary murine cardiac fibroblast activation and in knockout mouse models that underwent transverse aortic constriction (TAC) surgery to induce cardiac injury by pressure overload. Expression of Ror1 and Ror2 were robustly and exclusively induced in fibroblasts in hearts after TAC surgery, and both were rapidly upregulated after early activation of primary murine cardiac fibroblasts in culture. Cultured fibroblasts isolated from Ror1/2-KO mice displayed a pro-inflammatory phenotype indicative of impaired myofibroblast differentiation. Although the combined ablation of Ror1/2 in mice did not result in a detectable baseline phenotype, TAC surgery led to the death of all mice by day 6 that was associated with myocardial hyper-inflammation and vascular leakage.ConclusionsTogether, these results show that Ror1/2 are essential for the progression of myofibroblast differentiation and for the adaptive remodeling of the heart in response to pressure overload.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1676
Author(s):  
Yonggang Ma

Neutrophils are first-line responders of the innate immune system. Following myocardial infarction (MI), neutrophils are quickly recruited to the ischemic region, where they initiate the inflammatory response, aiming at cleaning up dead cell debris. However, excessive accumulation and/or delayed removal of neutrophils are deleterious. Neutrophils can promote myocardial injury by releasing reactive oxygen species, granular components, and pro-inflammatory mediators. More recent studies have revealed that neutrophils are able to form extracellular traps (NETs) and produce extracellular vesicles (EVs) to aggravate inflammation and cardiac injury. On the contrary, there is growing evidence showing that neutrophils also exert anti-inflammatory, pro-angiogenic, and pro-reparative effects, thus facilitating inflammation resolution and cardiac repair. In this review, we summarize the current knowledge on neutrophils’ detrimental roles, highlighting the role of recently recognized NETs and EVs, followed by a discussion of their beneficial effects and molecular mechanisms in post-MI cardiac remodeling. In addition, emerging concepts about neutrophil diversity and their modulation of adaptive immunity are discussed.


2017 ◽  
Author(s):  
Naisana S. Asli ◽  
Munira Xaymardan ◽  
Ralph Patrick ◽  
Nona Farbehi ◽  
James Cornwell ◽  
...  

SUMMARYThe interstitial and perivascular spaces of the mammalian heart contain a highly interactive tissue community essential for cardiac homeostasis, repair and regeneration. Mesenchymal cells (fibroblasts) are one of the most abundant cell types, playing key roles as sentinels, tissue architects, paracrine signaling hubs and lineage precursors, and are linked to heart disease through their roles in inflammation and fibrosis. Platelet-derived growth factors (PDGFs) are secreted by several cell types involved in cardiac injury and repair, and are recognized mitogens for cardiac fibroblasts and mesenchymal stem cells. However, their roles are complex and investigations of their impact on heart repair have produced contrasting outcomes, leaving therapeutic potential uncertain. Here, we use new approaches and tools, including single cell RNA sequencing, to explore cardiac fibroblast heterogeneity and how PDGF receptor α (PDGFRα) signaling impacts fibroblasts during heart repair. Short-term systemic delivery of PDGF-AB to mice from the time of myocardial infarction (MI) led to enhanced anatomical and functional recovery. Underpinning these benefits was a priming effect, in which PDGF-AB accelerated exit of fibroblasts from quiescence and induced a higher translational biosynthetic capacity in both fibroblasts and macrophages without triggering fibrosis. Our study highlights the significant biosynthetic heterogeneity and plasticity in cardiac fibroblast populations, and suggests a rationale for a novel therapeutic approach to cardiac injury involving controlled stimulation of fibroblast activation.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Nicholas Chavkin ◽  
Soichi Sano ◽  
Kenneth Walsh

Background: A hallmark of heart failure is cardiac fibrosis, which results from the injury-induced differentiation response of resident fibroblasts to myofibroblasts that deposit extracellular matrix. During myofibroblast differentiation, fibroblasts progress through polarization stages of early pro-inflammation, intermediate proliferation, and late maturation, but the regulators of this progression are poorly understood. Planar cell polarity receptors, receptor tyrosine kinase like orphan receptor 1 and 2 (Ror1/2), can function to promote cell differentiation and transformation. In this study, we investigated the role of the Ror1/2 in a model of heart failure with emphasis on myofibroblast differentiation. Methods and Results: The role of Ror1/2 during cardiac myofibroblast differentiation was studied in cell culture models of primary murine cardiac fibroblast activation and in knockout mouse models that underwent transverse aortic constriction (TAC) surgery to induce cardiac injury by pressure overload. Expression of Ror1 and Ror2 were robustly and exclusively induced in fibroblasts in hearts after TAC surgery, and both were rapidly upregulated after early activation of primary murine cardiac fibroblasts in culture. Cultured fibroblasts isolated from Ror1/2-KO mice displayed a pro-inflammatory phenotype indicative of impaired myofibroblast differentiation. Although the combined ablation of Ror1/2 in mice did not result in a detectable baseline phenotype, TAC surgery led to the death of all mice by day 6 that was associated with myocardial hyper-inflammation and vascular leakage. Conclusions: Together, these results show that Ror1/2 are essential for the progression of myofibroblast differentiation and for the adaptive remodeling of the heart in response to pressure overload.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Yong Sook Kim ◽  
Hyang Hee Cho ◽  
Dong Im Cho ◽  
Hye-yun Jeong ◽  
Soo yeon Lim ◽  
...  

AbstractResistin-like alpha (Retnla) is a member of the resistin family and known to modulate fibrosis and inflammation. Here, we investigated the role of Retnla in the cardiac injury model. Myocardial infarction (MI) was induced in wild type (WT), Retnla knockout (KO), and Retnla transgenic (TG) mice. Cardiac function was assessed by echocardiography and was significantly preserved in the KO mice, while worsened in the TG group. Angiogenesis was substantially increased in the KO mice, and cardiomyocyte apoptosis was markedly suppressed in the KO mice. By Retnla treatment, the expression of p21 and the ratio of Bax to Bcl2 were increased in cardiomyocytes, while decreased in cardiac fibroblasts. Interestingly, the numbers of cardiac macrophages and unsorted bone marrow cells (UBCs) were higher in the KO mice than in the WT mice. Besides, phosphorylated histone H3(+) cells were more frequent in bone marrow of KO mice. Moreover, adiponectin in UBCs was notably higher in the KO mice compared with WT mice. In an adoptive transfer study, UBCs were isolated from KO mice to transplant to the WT infarcted heart. Cardiac function was better in the KO-UBCs transplanted group in the WT-UBCs transplanted group. Taken together, proliferative and adiponectin-rich bone marrow niche was associated with substantial cardiac recovery by suppression of cardiac apoptosis and proliferation of cardiac fibroblast.


2020 ◽  
Vol 134 (1) ◽  
pp. 71-72
Author(s):  
Naseer Ahmed ◽  
Masooma Naseem ◽  
Javeria Farooq

Abstract Recently, we have read with great interest the article published by Ibarrola et al. (Clin. Sci. (Lond.) (2018) 132, 1471–1485), which used proteomics and immunodetection methods to show that Galectin-3 (Gal-3) down-regulated the antioxidant peroxiredoxin-4 (Prx-4) in cardiac fibroblasts. Authors concluded that ‘antioxidant activity of Prx-4 had been identified as a protein down-regulated by Gal-3. Moreover, Gal-3 induced a decrease in total antioxidant capacity which resulted in a consequent increase in peroxide levels and oxidative stress markers in cardiac fibroblasts.’ We would like to point out some results stated in the article that need further investigation and more detailed discussion to clarify certain factors involved in the protective role of Prx-4 in heart failure.


Author(s):  
Shafreena Shaukat Ali ◽  
Liza Noordin ◽  
Ruzilawati Abu Bakar ◽  
Satirah Zainalabidin ◽  
Zakiah Jubri ◽  
...  

2015 ◽  
Vol 282 (1821) ◽  
pp. 20152147 ◽  
Author(s):  
Teresa Kennedy-Lydon ◽  
Nadia Rosenthal

The hearts of lower vertebrates such as fish and salamanders display scarless regeneration following injury, although this feature is lost in adult mammals. The remarkable capacity of the neonatal mammalian heart to regenerate suggests that the underlying machinery required for the regenerative process is evolutionarily retained. Recent studies highlight the epicardial covering of the heart as an important source of the signalling factors required for the repair process. The developing epicardium is also a major source of cardiac fibroblasts, smooth muscle, endothelial cells and stem cells. Here, we examine animal models that are capable of scarless regeneration, the role of the epicardium as a source of cells, signalling mechanisms implicated in the regenerative process and how these mechanisms influence cardiomyocyte proliferation. We also discuss recent advances in cardiac stem cell research and potential therapeutic targets arising from these studies.


Sign in / Sign up

Export Citation Format

Share Document