scholarly journals Role of Neutrophils in Cardiac Injury and Repair Following Myocardial Infarction

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1676
Author(s):  
Yonggang Ma

Neutrophils are first-line responders of the innate immune system. Following myocardial infarction (MI), neutrophils are quickly recruited to the ischemic region, where they initiate the inflammatory response, aiming at cleaning up dead cell debris. However, excessive accumulation and/or delayed removal of neutrophils are deleterious. Neutrophils can promote myocardial injury by releasing reactive oxygen species, granular components, and pro-inflammatory mediators. More recent studies have revealed that neutrophils are able to form extracellular traps (NETs) and produce extracellular vesicles (EVs) to aggravate inflammation and cardiac injury. On the contrary, there is growing evidence showing that neutrophils also exert anti-inflammatory, pro-angiogenic, and pro-reparative effects, thus facilitating inflammation resolution and cardiac repair. In this review, we summarize the current knowledge on neutrophils’ detrimental roles, highlighting the role of recently recognized NETs and EVs, followed by a discussion of their beneficial effects and molecular mechanisms in post-MI cardiac remodeling. In addition, emerging concepts about neutrophil diversity and their modulation of adaptive immunity are discussed.

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 209
Author(s):  
Denis Reis de Assis ◽  
Attila Szabo ◽  
Jordi Requena Osete ◽  
Francesca Puppo ◽  
Kevin S. O’Connell ◽  
...  

Schizophrenia (SCZ) and bipolar disorder (BIP) are severe mental disorders with a considerable disease burden worldwide due to early age of onset, chronicity, and lack of efficient treatments or prevention strategies. Whilst our current knowledge is that SCZ and BIP are highly heritable and share common pathophysiological mechanisms associated with cellular signaling, neurotransmission, energy metabolism, and neuroinflammation, the development of novel therapies has been hampered by the unavailability of appropriate models to identify novel targetable pathomechanisms. Recent data suggest that neuron–glia interactions are disturbed in SCZ and BIP, and are modulated by estrogen (E2). However, most of the knowledge we have so far on the neuromodulatory effects of E2 came from studies on animal models and human cell lines, and may not accurately reflect many processes occurring exclusively in the human brain. Thus, here we highlight the advantages of using induced pluripotent stem cell (iPSC) models to revisit studies of mechanisms underlying beneficial effects of E2 in human brain cells. A better understanding of these mechanisms opens the opportunity to identify putative targets of novel therapeutic agents for SCZ and BIP. In this review, we first summarize the literature on the molecular mechanisms involved in SCZ and BIP pathology and the beneficial effects of E2 on neuron–glia interactions. Then, we briefly present the most recent developments in the iPSC field, emphasizing the potential of using patient-derived iPSCs as more relevant models to study the effects of E2 on neuron–glia interactions.


2020 ◽  
Vol 48 (2) ◽  
pp. 429-439 ◽  
Author(s):  
Jorge Gago ◽  
Danilo M. Daloso ◽  
Marc Carriquí ◽  
Miquel Nadal ◽  
Melanie Morales ◽  
...  

Besides stomata, the photosynthetic CO2 pathway also involves the transport of CO2 from the sub-stomatal air spaces inside to the carboxylation sites in the chloroplast stroma, where Rubisco is located. This pathway is far to be a simple and direct way, formed by series of consecutive barriers that the CO2 should cross to be finally assimilated in photosynthesis, known as the mesophyll conductance (gm). Therefore, the gm reflects the pathway through different air, water and biophysical barriers within the leaf tissues and cell structures. Currently, it is known that gm can impose the same level of limitation (or even higher depending of the conditions) to photosynthesis than the wider known stomata or biochemistry. In this mini-review, we are focused on each of the gm determinants to summarize the current knowledge on the mechanisms driving gm from anatomical to metabolic and biochemical perspectives. Special attention deserve the latest studies demonstrating the importance of the molecular mechanisms driving anatomical traits as cell wall and the chloroplast surface exposed to the mesophyll airspaces (Sc/S) that significantly constrain gm. However, even considering these recent discoveries, still is poorly understood the mechanisms about signaling pathways linking the environment a/biotic stressors with gm responses. Thus, considering the main role of gm as a major driver of the CO2 availability at the carboxylation sites, future studies into these aspects will help us to understand photosynthesis responses in a global change framework.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1002
Author(s):  
Fabiola Marino ◽  
Mariangela Scalise ◽  
Eleonora Cianflone ◽  
Luca Salerno ◽  
Donato Cappetta ◽  
...  

Over the years strong evidence has been accumulated showing that aerobic physical exercise exerts beneficial effects on the prevention and reduction of cardiovascular risk. Exercise in healthy subjects fosters physiological remodeling of the adult heart. Concurrently, physical training can significantly slow-down or even reverse the maladaptive pathologic cardiac remodeling in cardiac diseases, improving heart function. The underlying cellular and molecular mechanisms of the beneficial effects of physical exercise on the heart are still a subject of intensive study. Aerobic activity increases cardiovascular nitric oxide (NO) released mainly through nitric oxidase synthase 3 activity, promoting endothelium-dependent vasodilation, reducing vascular resistance, and lowering blood pressure. On the reverse, an imbalance between increasing free radical production and decreased NO generation characterizes pathologic remodeling, which has been termed the “nitroso-redox imbalance”. Besides these classical evidence on the role of NO in cardiac physiology and pathology, accumulating data show that NO regulate different aspects of stem cell biology, including survival, proliferation, migration, differentiation, and secretion of pro-regenerative factors. Concurrently, it has been shown that physical exercise generates physiological remodeling while antagonizes pathologic remodeling also by fostering cardiac regeneration, including new cardiomyocyte formation. This review is therefore focused on the possible link between physical exercise, NO, and stem cell biology in the cardiac regenerative/reparative response to physiological or pathological load. Cellular and molecular mechanisms that generate an exercise-induced cardioprotective phenotype are discussed in regards with myocardial repair and regeneration. Aerobic training can benefit cells implicated in cardiovascular homeostasis and response to damage by NO-mediated pathways that protect stem cells in the hostile environment, enhance their activation and differentiation and, in turn, translate to more efficient myocardial tissue regeneration. Moreover, stem cell preconditioning by and/or local potentiation of NO signaling can be envisioned as promising approaches to improve the post-transplantation stem cell survival and the efficacy of cardiac stem cell therapy.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 629
Author(s):  
Jorge Gutiérrez-Cuevas ◽  
Ana Sandoval-Rodriguez ◽  
Alejandra Meza-Rios ◽  
Hugo Christian Monroy-Ramírez ◽  
Marina Galicia-Moreno ◽  
...  

Obesity is defined as excessive body fat accumulation, and worldwide obesity has nearly tripled since 1975. Excess of free fatty acids (FFAs) and triglycerides in obese individuals promote ectopic lipid accumulation in the liver, skeletal muscle tissue, and heart, among others, inducing insulin resistance, hypertension, metabolic syndrome, type 2 diabetes (T2D), atherosclerosis, and cardiovascular disease (CVD). These diseases are promoted by visceral white adipocyte tissue (WAT) dysfunction through an increase in pro-inflammatory adipokines, oxidative stress, activation of the renin-angiotensin-aldosterone system (RAAS), and adverse changes in the gut microbiome. In the heart, obesity and T2D induce changes in substrate utilization, tissue metabolism, oxidative stress, and inflammation, leading to myocardial fibrosis and ultimately cardiac dysfunction. Peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of carbohydrate and lipid metabolism, also improve insulin sensitivity, triglyceride levels, inflammation, and oxidative stress. The purpose of this review is to provide an update on the molecular mechanisms involved in obesity-linked CVD pathophysiology, considering pro-inflammatory cytokines, adipokines, and hormones, as well as the role of oxidative stress, inflammation, and PPARs. In addition, cell lines and animal models, biomarkers, gut microbiota dysbiosis, epigenetic modifications, and current therapeutic treatments in CVD associated with obesity are outlined in this paper.


2020 ◽  
Vol 168 (1) ◽  
pp. 1-6
Author(s):  
Chikashi Yoshimura ◽  
Akiomi Nagasaka ◽  
Hitoshi Kurose ◽  
Michio Nakaya

Abstract Myocardial infarction is one of the major causes of death worldwide. Many heart cells die during myocardial infarction through various processes such as necrosis, apoptosis, necroptosis, autophagy-related cell death, pyroptosis and ferroptosis. These dead cells in infarcted hearts expose the so-called ‘eat-me’ signals, such as phosphatidylserine, on their surfaces, enhancing their removal by professional and non-professional phagocytes. Clearance of dead cells by phagocytes in the diseased hearts plays a crucial role in the pathology of myocardial infarction by inhibiting the inflammatory responses caused by the leakage of contents from dead cells. This review focuses on the rapidly growing understanding of the molecular mechanisms of dead cell phagocytosis, termed efferocytosis, during myocardial infarction, which contributes to the pathophysiology of myocardial infarction.


2014 ◽  
Vol 458 (2) ◽  
pp. 187-193 ◽  
Author(s):  
María Fernández-Velasco ◽  
Silvia González-Ramos ◽  
Lisardo Boscá

Emerging evidence points to the involvement of specialized cells of the immune system as key drivers in the pathophysiology of cardiovascular diseases. Monocytes are an essential cell component of the innate immune system that rapidly mobilize from the bone marrow to wounded tissues where they differentiate into macrophages or dendritic cells and trigger an immune response. In the healthy heart a limited, but near-constant, number of resident macrophages have been detected; however, this number significantly increases during cardiac damage. Shortly after initial cardiac injury, e.g. myocardial infarction, a large number of macrophages harbouring a pro-inflammatory profile (M1) are rapidly recruited to the cardiac tissue, where they contribute to cardiac remodelling. After this initial period, resolution takes place in the wound, and the infiltrated macrophages display a predominant deactivation/pro-resolution profile (M2), promoting cardiac repair by mediating pro-fibrotic responses. In the present review we focus on the role of the immune cells, particularly in the monocyte/macrophage population, in the progression of the major cardiac pathologies myocardial infarction and atherosclerosis.


2021 ◽  
Vol 66 (4) ◽  
pp. 273-283
Author(s):  
Zhousheng Jin ◽  
Fangfang Xia ◽  
Jiaojiao Dong ◽  
Tingting Lin ◽  
Yaoyao Cai ◽  
...  

Glucocorticoid excess often causes a variety of cardiovascular complications, including hypertension, atherosclerosis, and cardiac hypertrophy. To abrogate its cardiac side effects, it is necessary to fully disclose the pathophysiological role of glucocorticoid in cardiac remodelling. Previous clinical and experimental studies have found that omentin-1, one of the adipokines, has beneficial effects in cardiovascular diseases, and is closely associated with metabolic disorders. However, there is no evidence to address the potential role of omentin-1 in glucocorticoid excess-induced cardiac injuries. To uncover the links, the present study utilized rat model with glucocorticoid-induced cardiac injuries and clinical patients with abnormal cardiac function. Chronic administration of glucocorticoid excess reduced rat serum omentin-1 concentration, which closely correlated with cardiac functional parameters. Intravenous administration of adeno-associated virus encoding omentin-1 upregulated the circulating omentin-1 level and attenuated glucocorticoid excess-induced cardiac hypertrophy and functional disorders. Overexpression of omentin-1 also improved cardiac mitochondrial function, including the reduction of lipid deposits, induction of mitochondrial biogenesis, and enhanced mitochondrial activities. Mechanistically, omentin-1 phosphorylated and activated the GSK3β pathway in the heart. From a study of 28 patients with Cushing’s syndrome and 23 healthy subjects, the plasma level of glucocorticoid was negatively correlated with omentin-1, and was positively associated with cardiac ejection fraction and fractional shortening. Collectively, the present study provided a novel role of omentin-1 in glucocorticoid excess-induced cardiac injuries and found that the omentin-1/GSK3β pathway was a potential therapeutic target in combating the side effects of glucocorticoid.


2005 ◽  
pp. 1191-1202
Author(s):  
Luciano Babuin ◽  
Allan S. Jaffe

It has been known for 50 years that transaminase activity increases in patients with acute myocardial infarction. With the development of creatine kinase (CK), biomarkers of cardiac injury began to take a major role in the diagnosis and management of patients with acute cardiovascular disease. In 2000 the European Society of Cardiology and the American College of Cardiology recognized the pivotal role of biomarkers and made elevations in their levels the “cornerstone” of diagnosis of acute myocardial infarction. At that time, they also acknowledged that cardiac troponin I and T had supplanted CK-MB as the analytes of choice for diagnosis. In this review, we discuss the science underlying the use of troponin biomarkers, how to interpret troponin values properly and how to apply these measurements to patients who present with possible cardiovascular disease. Troponin is the biomarker of choice for the detection of cardiac injury. To use it properly, one must understand how sensitive the specific assay being used is for detecting cardiac injury, the fact that elevated troponin levels are highly specific for cardiac injury and some critical issues related to the basic science of the protein and its measurement. In this article, we review the biology of troponin, characteristics of assays that measure serum troponin levels and how to apply these measurements to patients who present with possible cardiovascular disease. We also discuss other clinical situations in which troponin levels may be elevated.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Lanfang Li ◽  
Heng Zeng ◽  
Jian-xiong Chen

Background: Apelin is an endogenous ligand for the angiotensin-like 1 receptor (APJ) and is emerging as a key player in the regulation of angiogenesis as well as ischemia/reperfusion injury. So far, little is known about the functional role of apelin in myocardial ischemia. We investigated the potential intracellular molecular mechanisms and protective role of apelin during myocardial ischemic injury. Methods and Results: Myocardial ischemia was achieved by ligation of the left anterior descending coronary artery (LAD) for 24 hours and 14 days. Myocardial apoptosis was detected by TUNEL staining. Akt, endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF), SDF-1 and CXCR4 expression were measured by western blot. The CD133+/cKit+/Sca1+, CD133/SDF-1+ and cKit/CXCR4+ cells were determined by immunostaining. Myocardial capillary and arteriole densities were analyzed in the border zone of infarcted myocardium at 14 d of ischemia. Treatment of C57BL/6J mice with apelin-13 (1 mg/Kg.d) by i.p. injection for 3 days before surgery results in significant decreases in TUNEL positive cells and myocardial infarct size at 24 hours of ischemia. Treatment with apelin increases the phosphorylation of AKT and eNOS and upregulates VEGF expression in the ischemic heart. Furthermore, treatment with apelin leads to the expression of SDF-1 and CXCR4 and increases in the number of CD133+/cKit+/Sca1+, CD133/SDF-1+ and cKit/CXCR4+ cells in ischemic hearts. Treatment with apelin also significantly increases myocardial capillary densities and arteriole formation together with a significant decrease in the ratio of heart weight to body weight at 14 days of ischemia. This is accompanied by a significant improvement of cardiac function after 14 days of ischemia. Conclusions: Our data demonstrate that apelin contributes to the protection of myocardial infarction and angiogenesis by the mechanisms involving in upregulation of SDF-1/CXCR4 and AKT/eNOS/VEGF pathways.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1887 ◽  
Author(s):  
Francesco Bonollo ◽  
George N. Thalmann ◽  
Marianna Kruithof-de Julio ◽  
Sofia Karkampouna

Tumors strongly depend on their surrounding tumor microenvironment (TME) for growth and progression, since stromal elements are required to generate the optimal conditions for cancer cell proliferation, invasion, and possibly metastasis. Prostate cancer (PCa), though easily curable during primary stages, represents a clinical challenge in advanced stages because of the acquisition of resistance to anti-cancer treatments, especially androgen-deprivation therapies (ADT), which possibly lead to uncurable metastases such as those affecting the bone. An increasing number of studies is giving evidence that prostate TME components, especially cancer-associated fibroblasts (CAFs), which are the most abundant cell type, play a causal role in PCa since the very early disease stages, influencing therapy resistance and metastatic progression. This is highlighted by the prognostic value of the analysis of stromal markers, which may predict disease recurrence and metastasis. However, further investigations on the molecular mechanisms of tumor–stroma interactions are still needed to develop novel therapeutic approaches targeting stromal components. In this review, we report the current knowledge of the characteristics and functions of the stroma in prostate tumorigenesis, including relevant discussion of normal prostate homeostasis, chronic inflammatory conditions, pre-neoplastic lesions, and primary and metastatic tumors. Specifically, we focus on the role of CAFs, to point out their prognostic and therapeutic potential in PCa.


Sign in / Sign up

Export Citation Format

Share Document