scholarly journals Autoimmune Inflammation and Insulin Resistance: Hallmarks So Far and Yet So Close to Explain Diabetes Endotypes

2021 ◽  
Vol 21 (12) ◽  
Author(s):  
Alessandra Petrelli ◽  
Anna Giovenzana ◽  
Vittoria Insalaco ◽  
Brett E. Phillips ◽  
Massimo Pietropaolo ◽  
...  

Abstract Purpose of Review Diabetes mellitus can be categorized into two major variants, type 1 and type 2. A number of traits such as clinical phenotype, age at disease onset, genetic background, and underlying pathogenesis distinguish the two forms. Recent Findings Recent evidence indicates that type 1 diabetes can be accompanied by insulin resistance and type 2 diabetes exhibits self-reactivity. These two previously unknown conditions can influence the progression and outcome of the disease. Unlike most conventional considerations, diabetes appears to consist of a spectrum of intermediate phenotypes that includes monogenic and polygenic loci linked to inflammatory processes including autoimmunity, beta cell impairment, and insulin resistance. Summary Here we discuss why a shift of the classical bi-modal view of diabetes (autoimmune vs. non-autoimmune) is necessary in favor of a model of an immunological continuum of endotypes lying between the two extreme “insulin-resistant” and “autoimmune beta cell targeting,” shaped by environmental and genetic factors which contribute to determine specific immune-conditioned outcomes.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jomana Khawandanah

Abstract Diabetes mellitus is a worldwide epidemic affecting the health of millions of people. While type 1 diabetes (T1D) is caused by autoimmune destruction of the insulin-producing beta cells of the pancreas, type 2 diabetes (T2D) results from a combination of insulin resistance and beta cell insulin secretory defect. Clear definition and diagnosis of these two types of diabetes has been increasing more and more difficult, leading to the inclusion of a new category, namely double or hybrid diabetes (DD) that demonstrates symptoms of both T1D and T2D via the accelerator hypothesis. In this review, we discuss the worldwide prevalence of DD, its main physiological characteristics, including beta-cell autoimmunity, insulin resistance, and cardiovascular disease, the main risk factors of developing DD, mainly genetics, obesity and lifestyle choices, as well as potential treatments, such as insulin titration, metformin and behavioural modifications. Increasing awareness of DD among the general population and primary care practitioners is necessary for successfully treating this complex, hybrid disease in the future.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Daniel Espes ◽  
Mats Martinell ◽  
Per-Ola Carlsson

Betatrophin has recently been described as a key hormone to stimulate beta-cell mass expansion in response to insulin resistance and obesity in mice. The finding has generated an interest in the development of antidiabetic drugs with betatrophin as the active component. However, the circulating levels of betatrophin in patients with type 2 diabetes are not well known. Betatrophin concentrations in plasma of 27 type 2 diabetes patients and 18 gender-, age-, and BMI-matched controls were measured. Study participants were characterized with regard to BMI, waist and hip circumference, blood pressure, and fasting plasma blood lipids, creatinine, glucose, HbA1c, and C-peptide. HOMA2 indices were calculated. Betatrophin was 40% higher in patients with type 2 diabetes (893±80versus639±66 pg/mL). Betatrophin positively correlated with age in the controls and with HbA1c in the type 2 diabetes patients. All study participants were insulin resistant with mean HOMA2B IR in both groups exceeding 2 andHOMA2%S<50%. Control individuals had impaired fasting glucose concentrations. In this report on betatrophin concentrations in type 2 diabetes and insulin resistance, elevated betatrophin levels were measured in the patients with type 2 diabetes. Future studies are clearly needed to delineate the exact role, if any, of betatrophin in regulating human beta-cell mass.


Author(s):  
Cliona Small ◽  
Aoife M Egan ◽  
El Muntasir Elhadi ◽  
Michael W O’Reilly ◽  
Aine Cunningham ◽  
...  

Summary We describe three patients presenting with diabetic ketoacidosis secondary to ketosis prone type 2, rather than type 1 diabetes. All patients were treated according to a standard DKA protocol, but were subsequently able to come off insulin therapy while maintaining good glycaemic control. Ketosis-prone type 2 diabetes (KPD) presenting with DKA has not been described previously in Irish patients. The absence of islet autoimmunity and evidence of endogenous beta cell function after resolution of DKA are well-established markers of KPD, but are not readily available in the acute setting. Although not emphasised in any current guidelines, we have found that a strong family history of type 2 diabetes and the presence of cutaneous markers of insulin resistance are strongly suggestive of KPD. These could be emphasised in future clinical practice guidelines. Learning points: Even in white patients, DKA is not synonymous with type 1 diabetes and autoimmune beta cell failure. KPD needs to be considered in all patients presenting with DKA, even though it will not influence their initial treatment. Aside from markers of endogenous beta cell function and islet autoimmunity, which in any case are unlikely to be immediately available to clinicians, consideration of family history of type 2 diabetes and cutaneous markers of insulin resistance might help to identify those with KPD and are more readily apparent in the acute setting, though not emphasised in guidelines. Consideration of KPD should never alter the management of the acute severe metabolic derangement of DKA, and phasing out of insulin therapy requires frequent attendance and meticulous and cautious surveillance by a team of experienced diabetes care providers.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1746-P
Author(s):  
PATTARA WIROMRAT ◽  
MELANIE CREE-GREEN ◽  
BRYAN C. BERGMAN ◽  
KALIE L. TOMMERDAHL ◽  
AMY BAUMGARTNER ◽  
...  

2017 ◽  
Vol 68 (7) ◽  
pp. 1622-1627 ◽  
Author(s):  
Diana Simona Stefan ◽  
Andrada Mihai ◽  
Daiana Bajko ◽  
Daniela Lixandru ◽  
Laura Petcu ◽  
...  

Metabolic surgery is the most efficacious method for the treatment of morbid obesity and was recently included among the antidiabetes treatments recommended in obese type 2 diabetes (T2D) patients. The aim of this study was to compare in a randomized controlled trial the effect of sleeve gastrectomy (SG) to that of intensive lifestyle intervention plus pharmacologic treatment on some markers of insulin resistance and beta cell function as well as some appetite controlling hormones in a group of male obese T2D subjects. The study groups comprised 20 subjects for SG and 21 control subjects. Fasting blood glucose, insulin, proinsulin, adiponectin, leptin, ghrelin, HOMA-IR, HOMA-%B, proinsulin-to-insulin ratio and proinsulin-to-adiponectin ratio were evaluated at baseline and after one year follow-up. Overall, patients in the SG group lost 78.98% of excess weight loss (%EWL) in comparison with 9.45% in the control group. This was accompanied by a significant improvement of insulin resistance markers, including increase of adiponectin and decrease of HOMA-IR, while no changes were recorded in the control group. Weight loss was also associated with a significant improvement of proinsulin-to-insulin and proinsulin-to-adiponectin ratio, both surrogate markers of beta cell dysfunction. These also improved in the control group, but were only marginally significant. Our findings suggest that improved insulin resistance and decreased beta cell dysfunction after sleeve gastrectomy might explain diabetes remission associated with metabolic surgery.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 601.2-602
Author(s):  
J. Avouac ◽  
M. Elhai ◽  
M. Forien ◽  
J. Sellam ◽  
F. Eymard ◽  
...  

Background:Type-2 diabetes and rheumatoid arthritis (RA) are two chronic diseases characterized by tissue inflammation and insulin resistance. To date, no data have evaluated the influence of RA-induced joint and systemic inflammation on the course of type-2 diabetes.Objectives:To study the impact of RA on type-2 diabetesMethods:Observational, multicenter, cross-sectional usual-care study, including 7 rheumatology centers. This study included over a 24-month period consecutive patients with type-2 diabetes and RA, fulfilling the 2010 ACR / EULAR criteria, and diabetic controls with osteoarthritis (OA). The following data were collected: demographics, disease activity and severity indices, current treatment for RA and diabetes, history and complications of diabetes. A systematic blood test was performed, assessing inflammatory (CRP levels) and metabolic (fasting glycemia and insulin levels, HbA1c) parameters. The HOMA2%B (insulin secretion) and HOMA2%S (tissue insulin sensitivity) indices (HOMA calculator, © Diabetes Trials Unit, University of Oxford) were used to assess insulin resistance. Ra and OA patients were compared using parametric tests after adjusting for age and BMI. A multivariate logistic regression was performed ti identify factors independently associated with insulin resistance.Results:We included 122 RA patients (74% women, mean age 64+/-11 years, mean disease duration 15+/-11 11 years, 75% with positive ACPA antibodies and 64% with erosive disease) and 54 controls with OA. 64% of RA patients were treated with oral corticosteroids <10 mg/day, 65% received methotrexate and 53% received targeted biological therapies.The characteristics of type-2 diabetes in the 54 OA patients corresponded to severe insulin-resistant diabetes: age> 65 years, high BMI> 30 kg/m2, mean HbA1c 7.3%+/-11 1.3%, 30% of insulin requirement, high frequency of other cardiovascular risk factors, macroangiopathy found in almost half of patients and biological criteria of insulin resistance (elevation of HOMA2%B and decrease of HOMA2%S).RA patients with type-2 diabetes had a younger age (64+/-11 years vs. 68+/-12 years, p=0.031) and lower BMI (27.7+/-11 5.5 vs. 31.5+/-11 6.3, p<0.001). These patients also had severe diabetes (HbA1c 7.0%+/-11 1.2%, 29% of insulin requirement, 43% of macroangiopathy) with an insulin resistance profile identical to OA controls. After adjusting for age and BMI, RA patients had a significantly increased insulin secretion compared to OA patients (HOMA2%B: 83.1+/-11 65.2 vs. 49.3+/-11 25.7, p=0.023) as well as a significant reduction of insulin sensitivity (HOMA2%S: 61.1+/-11 31.6 vs. 92.9+/-11 68.1, p=0.016). This insulin resistance was associated with the inflammatory activity of RA, with a negative correlation between the HOMA2%S and the DAS28 (r=-0.28, p=0.027). The multivariate logistic regression confirmed the independent association between the HOMA2%S index and DAS28 (OR: 3.93, 95% CI 1.02-15.06), as well as high blood pressure (OR: 1.29, 95% CI 0.33-1.99 CI).Conclusion:RA patients with type-2 diabetes displayed severe, poorly controlled diabetes, highlighting the burden of comorbidities associated with RA. The clinical-biological profile of diabetic RA patients was severe insulin-resistant diabetes, with a biological profile of insulin resistance linked to the inflammatory activity of the disease. These findings may have therapeutic implications, with the potential targeting of insulin resistance through the treatment of joint and systemic inflammation.Acknowledgments:Société Française de Rhumatologie (research grant)Bristol Myers Squibb (research grant)Disclosure of Interests:Jérôme Avouac Grant/research support from: Pfizer, Bristol Myers Squibb, Consultant of: Sanofi, Bristol Myers Squibb, Abbvie, Boerhinger, Nordic Pharma, Speakers bureau: Sanofi, Bristol Myers Squibb Abbvie, MSD, Pfizer, Nordic Pharma, Muriel ELHAI: None declared, Marine Forien: None declared, Jérémie SELLAM: None declared, Florent Eymard Consultant of: Regenlab, Anna Moltó Grant/research support from: Pfizer, UCB, Consultant of: Abbvie, BMS, MSD, Novartis, Pfizer, UCB, Laure Gossec Grant/research support from: Lilly, Mylan, Pfizer, Sandoz, Consultant of: AbbVie, Amgen, Biogen, Celgene, Janssen, Lilly, Novartis, Pfizer, Sandoz, Sanofi-Aventis, UCB, Frédéric Banal: None declared, Joel Daminano: None declared, Philippe Dieudé: None declared, Yannick Allanore Shareholder of: Sanofi, Roche, Consultant of: Actelion, Bayer, BMS, Boehringer Ingelheim, Inventiva, Sanofi


2000 ◽  
Vol 50 ◽  
pp. 108 ◽  
Author(s):  
Meng H. Tan ◽  
Sethu Reddy ◽  
Jean Abram ◽  
Pantelis Andreou ◽  
Danita Volder

Author(s):  
Kauê de Melo Souza ◽  
Lucas Facco ◽  
Amanda Alves Fecury ◽  
Maria Helena Mendonça de Araújo ◽  
Euzébio de Oliveira ◽  
...  

Diabetes mellitus is a succession of different types of disorders in metabolism that are characterized by causing a high rate of blood sugar. Because it is a disease with genetic factors type 1 diabetes has as main risk factor heredity, while type 2 diabetes besides these factors, includes obesity, high blood pressure, poor food education and advancing age. This study aims to show the number of cases of type 1 and 2 diabetes diagnosed in Amapá with the variables gender, age group, sedentary lifestyle, overweight, smoking, between 2007 and 2012. The data for the research were taken from the computer department of SUS, DATASUS (http://datasus.saude.gov.br). Type 1 and 2 diabetes mellitus (DM1 and DM2) are diseases that are tied to disturbances in production or in the efficient use of insulin. Smoking, as well as sedentary lifestyle and overweight are important risk factors for the development of DM2. Type 2 diabetes mellitus provides the development of various organic nerve lesions. In addition, DM2, through its chronicity, enables the development of retinopathies, nephropathies and other conditions negative to the individual’s health.


2021 ◽  
pp. 1-9

1. Abstract Insulin Resistance is the leading cause of Type 2 diabetes mellitus [T2DM] onset. It occurs as a result of disturbances in lipid metabolism and increased levels of circulating free fatty acids [FFAs]. FFAs accumulate within the insulin sensitive tissues such as muscle, liver and adipose tissues exacerbating different molecular mechanisms. Increased fatty acid flux has been documented to be strongly associated with insulin resistant states and obesity causing inflammation that eventually causes type 2-diabetes development. FFAs appear to cause this defect in glucose transport by inhibiting insulin –stimulated tyrosine phosphorylation of insulin receptor substrate-1 [IRS-1] and IRS-1 associated phosphatidyl-inositol 3-kinase activity. A number of different metabolic abnormalities may increase intramyocellular or intrahepatic fatty acid metabolites that induce insulin resistance through different cellular mechanisms. The current review point out the link between enhanced FFAs flux and activation of PKC and how it impacts on both the insulin signaling in muscle and liver as shown from our laboratory data and highlighting the involvement of the inflammatory pathways importance. This embarks the importance of measuring the inflammatory biomarkers in clinical settings.


Sign in / Sign up

Export Citation Format

Share Document