scholarly journals Correction to: Optimization of Electrospray-Assisted Microencapsulation of Probiotics (Leuconostoc lactis) in Soy Protein Isolate-Oil Particles Using Box-Behnken Experimental Design

Author(s):  
Yashaswini Premjit ◽  
Jayeeta Mitra
2011 ◽  
Vol 236-238 ◽  
pp. 2773-2779
Author(s):  
Ying Cao Xu ◽  
Zhi Biao Feng ◽  
Chun Hong Liu

A statistical experimental design to plastein synthesis which was catalyzed by transglutaminase, using the mixture of soy protein isolate(SPI) hydrolysate and whey protein isolate (WPI) hydrolysate, was investigated. Enzyme/Substrate(E/S:5-25U/g), pH(5-9) and temperature (35-65°C) were selected as major operating variables. To investigate the effects of variables to yield of plastein, the statistical experiment of Box-Behnken design(BBD) and Response Surface methodology(RSM) was employed. Regression analysis showed that the experiment data accorded with the predicted values obtained from quadratic regression equation in BBD with R-Squared of 0.9866 and F-value of 102.51. The optimum results estimated by BBD were as follows: E/S(19.5U/g), pH(6.8), and temperature(50.0°C), gave a maximum plastein yield of 54%. In the present experiment, the preliminary study on plastein functions such as foaming, emulsifying, were showed that plastein had a good biological function.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1807
Author(s):  
Estefanía Álvarez-Castillo ◽  
José Manuel Aguilar ◽  
Carlos Bengoechea ◽  
María Luisa López-Castejón ◽  
Antonio Guerrero

Composite materials based on proteins and carbohydrates normally offer improved water solubility, biodegradability, and biocompatibility, which make them attractive for a wide range of applications. Soy protein isolate (SPI) has shown superabsorbent properties that are useful in fields such as agriculture. Alginate salts (ALG) are linear anionic polysaccharides obtained at a low cost from brown algae, displaying a good enough biocompatibility to be considered for medical applications. As alginates are quite hydrophilic, the exchange of ions from guluronic acid present in its molecular structure with divalent cations, particularly Ca2+, may induce its gelation, which would inhibit its solubilization in water. Both biopolymers SPI and ALG were used to produce composites through injection moulding using glycerol (Gly) as a plasticizer. Different biopolymer/plasticizer ratios were employed, and the SPI/ALG ratio within the biopolymer fraction was also varied. Furthermore, composites were immersed in different CaCl2 solutions to inhibit the amount of soluble matter loss and to enhance the mechanical properties of the resulting porous matrices. The main goal of the present work was the development and characterization of green porous matrices with inhibited solubility thanks to the gelation of alginate.


Author(s):  
Ozan Tas ◽  
Ulku Ertugrul ◽  
Mecit Halil Oztop ◽  
Bekir Gokcen Mazı

e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 433-442
Author(s):  
Hua He ◽  
Rui-jing Jia ◽  
Kai-qiang Dong ◽  
Jia-wen Huang ◽  
Zhi-yong Qin

Abstract A novel biodegradable protein-based material (UMSPIE) that consists of natural polymer soy protein isolate (SPI), ultrasonic-modified montmorillonite (UMMT), and ethylene glycol diglycidyl ether (EGDE) was produced by solution casting. Fourier infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TG), and scanning electron microscopy (SEM) were used to characterize the chemical structure and micro-morphologies of as-synthesized protein-based composite films. The results showed that the interlayer structure of MMT was destroyed by ultrasonic treatment, and the hydrogen bonding between SPI chains and the ultrasound-treated MMT plates was enhanced. The synergistic effect of UMMT and EGDE on SPI molecules made the network structure of the UMSPIE film denser. In addition, the mechanical and barrier properties of the as-synthesized films were explored. Compared with pure soy protein film, the tensile strength of the UMSPIE film has an increase of 266.82% (increasing from 4.4 to 16.14 MPa). From the above, the modified strategy of layered silicates filling combining crosslinking agents is considered as an effective method to improve the functional properties of bio-based polymer composites.


Sign in / Sign up

Export Citation Format

Share Document