Effects of Dietary Selenium, Vitamin E, and Their Combination on Growth, Serum Metabolites, and Antioxidant Defense System in Skeletal Muscle of Broilers Under Heat Stress

2012 ◽  
Vol 148 (3) ◽  
pp. 322-330 ◽  
Author(s):  
Shahab Ghazi Harsini ◽  
Mahmood Habibiyan ◽  
Mohammad Mehdi Moeini ◽  
Ali Reza Abdolmohammadi
2013 ◽  
Vol 304 (5) ◽  
pp. E495-E506 ◽  
Author(s):  
S. Keipert ◽  
M. Ost ◽  
A. Chadt ◽  
A. Voigt ◽  
V. Ayala ◽  
...  

Ectopic expression of uncoupling protein 1 (UCP1) in skeletal muscle (SM) mitochondria increases lifespan considerably in high-fat diet-fed UCP1 Tg mice compared with wild types (WT). To clarify the underlying mechanisms, we investigated substrate metabolism as well as oxidative stress damage and antioxidant defense in SM of low-fat- and high-fat-fed mice. Tg mice showed an increased protein expression of phosphorylated AMP-activated protein kinase, markers of lipid turnover (p-ACC, FAT/CD36), and an increased SM ex vivo fatty acid oxidation. Surprisingly, UCP1 Tg mice showed elevated lipid peroxidative protein modifications with no changes in glycoxidation or direct protein oxidation. This was paralleled by an induction of catalase and superoxide dismutase activity, an increased redox signaling (MAPK signaling pathway), and increased expression of stress-protective heat shock protein 25. We conclude that increased skeletal muscle mitochondrial uncoupling in vivo does not reduce the oxidative stress status in the muscle cell. Moreover, it increases lipid metabolism and reactive lipid-derived carbonyls. This stress induction in turn increases the endogenous antioxidant defense system and redox signaling. Altogether, our data argue for an adaptive role of reactive species as essential signaling molecules for health and longevity.


2015 ◽  
Vol 101 ◽  
pp. 15-21 ◽  
Author(s):  
Stefan Smesny ◽  
Berko Milleit ◽  
Miriam R. Schaefer ◽  
Uta-Christina Hipler ◽  
Christine Milleit ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 809 ◽  
Author(s):  
Zeeshan Ali Buttar ◽  
Sheng Nan Wu ◽  
Marino B. Arnao ◽  
Chaojie Wang ◽  
Ikram Ullah ◽  
...  

Melatonin (N-acetyl-5-methoxytryptamine) is a pleiotropic signaling molecule that plays a crucial role in the regulation of various environmental stresses, including heat stress (HS). In this study, a 100 μM melatonin (MT) pretreatment followed by exposure to heat stress for different time periods was found to efficiently reduce oxidative stress by preventing the over-accumulation of hydrogen peroxide (H2O2), lowering the lipid peroxidation content (malondialdehyde (MDA) content), and increasing proline (Pro) biosynthesis. Moreover, the activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), were increased substantially in MT-pretreated wheat seedlings. The presence of MT significantly improved the heat tolerance of wheat seedlings by modulating their antioxidant defense system, activating the ascorbate–glutathione (AsA–GSH) cycle comprising ascorbate peroxidase (APX), and increasing glutathione reductase (GR) activities. It also held the photosynthetic machinery stable by increasing the chlorophyll content. Enhancement in the endogenous MT contents was also observed in the MT+HS-treated plants. Furthermore, the expression of reactive oxygen species (ROS)-related genes TaSOD, TaPOD, and TaCAT, and anti-stress responsive genes, such as TaMYB80, TaWRKY26, and TaWRKY39, was also induced in MT-treated seedlings. Due to these notable changes, an improvement in stress resistance was observed in MT-treated seedlings compared with control. Taken together, our findings suggest that MT can play a key role in boosting the stress tolerance of plants by modulating the antioxidant defense system and regulating the transcription of stress-responsive genes.


2022 ◽  
Vol 10 (1) ◽  
pp. 1-9
Author(s):  
Daria Mylostуva ◽  
Vasyl Prudnikov ◽  
Oleksandr Kolisnyk ◽  
Anna Lykhach ◽  
Natalia Begma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document