scholarly journals Nano-selenium Supplementation Increases Selenoprotein (Sel) Gene Expression Profiles and Milk Selenium Concentration in Lactating Dairy Cows

2020 ◽  
Vol 199 (1) ◽  
pp. 113-119
Author(s):  
Liqiang Han ◽  
Kun Pang ◽  
Tong Fu ◽  
Clive J. C. Phillips ◽  
Tengyun Gao

AbstractSupplementation with selenium is common for dairy cows, but the importance of selenium source is not clear. This study aimed to compare nano-selenium (Nano-Se) and sodium selenite supplements for dairy cows on lactation performance, milk Se levels and selenoprotein (Sel) gene expression. Twelve multiparous Holstein cows were randomly divided into two groups: a control group fed a basal diet plus 0.30 mg Se/kg of DM as sodium selenite or Nano-Se for 30 days. Dry matter intake, milk yield and composition were not affected by dietary Se source (P > 0.05); however, the milk total Se levels and milk glutathione peroxidase (GSH-Px) activities were higher with Nano-Se supplementation than sodium selenite (P < 0.05). At the end of the experiment, Nano-Se supplementation significantly increased plasma Se levels and GSH-Px activity, compared with the sodium selenite supplement. The mRNA expression levels of glutathione peroxidase 1, 2 and 4; thioredoxin reductase 2 and 3; and selenoproteins W, T, K and F were markedly upregulated (P < 0.05) in the mammary gland of the Nano-Se group. Thus, the source of selenium plays an important role in the antioxidant status and in particular the Sel gene expression in the mammary glands of dairy cows, both being stimulated by nano sources.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qing Xia ◽  
Xiangtian Ling ◽  
Zhonghao Wang ◽  
Tao Shen ◽  
Minghao Chen ◽  
...  

Abstract Purpose and background Recently, we found that maximal medial rectus recession and lateral rectus resection in patients with complete lateral rectus paralysis resulted in a partial restoration of abduction. In an attempt to understand some of the mechanisms involved with this effect we examined gene expression profiles of lateral recti from these patients, with our focus being directed to genes related to myogenesis. Materials and methods Lateral recti resected from patients with complete lateral rectus paralysis and those from concomitant esotropia (controls) were collected. Differences in gene expression profiles between these two groups were examined using microarray analysis and quantitative Reverse-transcription PCR (qRT-PCR). Results A total of 3056 differentially expressed genes (DEGs) were identified between these two groups. Within the paralytic esotropia group, 2081 genes were up-regulated and 975 down-regulated. The results of RT-PCR revealed that PAX7, MYOG, PITX1, SIX1 and SIX4 showed higher levels of expression, while that of MYOD a lower level of expression within the paralytic esotropia group as compared with that in the control group (p < 0.05). Conclusion The decreased expression of MYOD in the paralytic esotropia group suggested that extraocular muscle satellite cell (EOMSCs) differentiation processes were inhibited. Whereas the high expression levels of PAX7, SIX1/4 and MYOG, suggested that the EOMSCs were showing an effective potential for differentiation. The stimulation resulting from muscle surgery may induce EOMSCs to differentiate and thus restore abduction function.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Chenlei Zheng ◽  
Cheng Wang ◽  
Tan Zhang ◽  
Ding Li ◽  
Xiao-feng Ni ◽  
...  

Objective. Posttransplantation diabetes mellitus (PTDM) is a known complication of transplantation that affects the prognosis. Tacrolimus (Tac or FK506) is a widely used immunosuppressant that has been reported to be a risk factor for PTDM and to further induce complications in heart and skeletal muscles, but the mechanism is still largely unknown. In our preliminary experiments, we found that after Tac treatment, blood glucose increased, and the weight of skeletal muscle declined. Here, we hypothesize that tacrolimus can induce PTDM and influence the atrophy of skeletal muscle. Methods. We designed preliminary experiments to establish a tacrolimus-induced PTDM model. Gene expression profiles in quadriceps muscle from this rat model were characterized by oligonucleotide microarrays. Then, differences in gene expression profiles in muscle from PTDM rats that received tacrolimus and control subjects were analyzed by using GeneSpring GX 11.0 software (Agilent). Functional annotation and enrichment analysis of differentially expressed genes (DEGs) helped us identify clues for the side effects of tacrolimus. Results. Our experiments found that the quadriceps in tacrolimus-induced PTDM group were smaller than those in the control group. The study identified 275 DEGs that may be responsible for insulin resistance and the progression of PTDM, including 86 upregulated genes and 199 downregulated genes. GO and KEGG functional analysis of the DEGs showed a significant correlation between PTDM and muscle development. PPI network analysis screened eight hub genes and found that they were related to troponin and tropomyosin. Conclusions. This study explored the molecular mechanism of muscle atrophy in a tacrolimus-induced PTDM model by bioinformatics analyses. We identified 275 DEGs and identified significant biomarkers for predicting the development and progression of tacrolimus-induced PTDM.


2009 ◽  
Vol 54 (No. 7) ◽  
pp. 324-332 ◽  
Author(s):  
L. Misurova ◽  
L. Pavlata ◽  
A. Pechova ◽  
R. Dvorak

The aim of this study was to evaluate the effect of a long-term peroral selenium supplementation in the form of sodium selenite and selenium lactate-protein complex by comparing selenium concentrations and glutathione peroxidase activity in blood of goats and their kids as well as comparing selenium concentrations in goat colostrums. For the study, a total of 27 clinically healthy pregnant white shorthair goats were used. They were divided to three groups, i.e., the control group (C) without any selenium supplementation, sodium selenite group (E1) and selenium lactate-protein complex group (E2). For four months, experimental goats received 0.43 mg of selenium per animal per day in diet; goats from the control group were given 0.15 mg of selenium per animal per day. At the beginning of the experiment, goats of all groups showed an average selenium concentration of 96 &mu;g/l in whole blood. On the parturition day, samples of first colostrum from goats and heparinized blood from goats and kids were taken. In the control group (C), average blood selenium concentrations of 111.4 ± 33.5 &mu;g/l were observed on the parturition day. In both experimental groups, selenium concentrations were significantly higher (<I>P</I> < 0.05). Average selenium concentration in the sodium selenite group (E1) was 177.2 ± 34.8 &mu;g/l and in the group supplemented with selenium lactate-protein complex (E2) 159.0 ± 28.5 &mu;g/l. Average glutathione peroxidase (GSH-Px) activity in blood of control goats (C) was 581.9 ± 99.2 &mu;kat/l, in group E1 1 154.6 ± 156.2 &mu;kat/l and in group E2 1 011.6 ± 153.6 &mu;kat/l. GSH-Px activity in experimental groups was significantly higher (<I>P</I> < 0.05) as compared with the control group. Average selenium concentrations in colostrum was in the control group 40.1 ± 12.8 &mu;g/l, in E1 99.0 ± 29.9 &mu;g/l and in group E2 79.0 ± 17.7 &mu;g/l. Colostral selenium concentrations in experimental groups were significantly higher (<I>P</I> < 0.05) as compared with the control group. No significant difference in the monitored parameters was found between experimental groups. In kids of control mothers (kC), average selenium concentrations in blood on the parturition day were 62.4 ± 22.9 &mu;g/l; kids of mothers supplemented with sodium selenite (kE1) showed average selenium levels of 100.0 ± 31.2 &mu;g/l, and the average selenium concentration in kids of mothers receiving lactate-protein complex was 83.4 ± 20.1 &mu;g/l (kE2). Average GSH-Px activity in control kids (kC) was 402.1 ± 153.9 &mu;kat/l. Kids from kE1 showed average activity of GSH-Px 806.1 ± 254.9 &mu;kat/l and kids from group kE2 529.9 ± 119.8 &mu;kat/l. Statistically significant difference (<I>P</I> < 0.05) was found only between kC and kE1 which showed significantly higher selenium concentration and GSH-Px activity. The results of this study confirm that both forms of selenium administered in experimental groups (i.e., sodium selenite and selenium lactate-protein complex) had similar biological effect in goats. However, results obtained in kids indicate a better effect of supplementation with sodium selenite.


2019 ◽  
Vol 21 (1) ◽  
pp. 295
Author(s):  
Rebeca González-Fernández ◽  
Rita Martín-Ramírez ◽  
Deborah Rotoli ◽  
Jairo Hernández ◽  
Frederick Naftolin ◽  
...  

Sirtuins are a family of deacetylases that modify structural proteins, metabolic enzymes, and histones to change cellular protein localization and function. In mammals, there are seven sirtuins involved in processes like oxidative stress or metabolic homeostasis associated with aging, degeneration or cancer. We studied gene expression of sirtuins by qRT-PCR in human mural granulosa-lutein cells (hGL) from IVF patients in different infertility diagnostic groups and in oocyte donors (OD; control group). Study 1: sirtuins genes’ expression levels and correlations with age and IVF parameters in women with no ovarian factor. We found significantly higher expression levels of SIRT1, SIRT2 and SIRT5 in patients ≥40 years old than in OD and in women between 27 and 39 years old with tubal or male factor, and no ovarian factor (NOF). Only SIRT2, SIRT5 and SIRT7 expression correlated with age. Study 2: sirtuin genes’ expression in women poor responders (PR), endometriosis (EM) and polycystic ovarian syndrome. Compared to NOF controls, we found higher SIRT2 gene expression in all diagnostic groups while SIRT3, SIRT5, SIRT6 and SIRT7 expression were higher only in PR. Related to clinical parameters SIRT1, SIRT6 and SIRT7 correlate positively with FSH and LH doses administered in EM patients. The number of mature oocytes retrieved in PR is positively correlated with the expression levels of SIRT3, SIRT4 and SIRT5. These data suggest that cellular physiopathology in PR’s follicle may be associated with cumulative DNA damage, indicating that further studies are necessary.


BMC Genomics ◽  
2016 ◽  
Vol 17 (1) ◽  
Author(s):  
Bazoumana Ouattara ◽  
Nathalie Bissonnette ◽  
Melissa Duplessis ◽  
Christiane L. Girard

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Gui-Hua Yue ◽  
Shao-Yuan Zhuo ◽  
Meng Xia ◽  
Zhuo Zhang ◽  
Yi-Wen Gao ◽  
...  

Objective. Hypertension is one of the most common cardiovascular disorders with high mortality. Here we explored the antihypertension effects of Huanglian Jiedu Decoction (HJD) on thoracic aorta gene expression in spontaneous hypertensive rats.Methods. A rat model of spontaneous hypertension was used. The gene change profile of thoracic aorta after JHD treatment was assessed by GeneChip(GC) analysis using the Agilent Whole Rat Genome Oligo Microarray.Results. Hypertension induced 441 genes upregulated and 417 genes downregulated compared with the normal control group. Treatment of HJD resulted in 76 genes downregulated and 20 genes upregulated. GC data analysis showed that the majority of change genes were involved in immune system process, developmental process, and cell death.Conclusion. Hypertension altered expression of many genes that regulate various biological functions. HJD significantly reduced hypertension and altered the gene expression profiles of SHR rats. These changing genes were involved in many cellular functions such as regulating smooth muscle contraction, Ca(2+) homeostasis, and NO pathway. This study provides the potential novel insights into hypertension and antihypertension effects of HJD.


2008 ◽  
Vol 53 (No. 6) ◽  
pp. 265-269 ◽  
Author(s):  
G. Dlouhá ◽  
S. Ševčíková ◽  
A. Dokoupilová ◽  
L. Zita ◽  
J. Heindl ◽  
...  

This study examined the effects of supplementation of dietary sodium selenite and sodium enriched alga <I>Chlorella</I> on growth performance, selenium concentration in breast meat and excreta, activity of glutathione peroxidase in meat, and oxidative stability of meat in broilers. Sexed broiler cockerels Ross 308 were allotted to 3 dietary treatments, each comprising 100 chickens. The basal diet was supplemented with 0 (control) or 0.3 mg/kg Se from sodium selenite (SS) or Se-<I>Chlorella</I> (SCH). Dietary supplementation with SCH increased (<I>P</I> < 0.05) body weight. The breast muscle Se concentration was increased (<I>P</I> < 0.05) by SCH (0.70 mg/kg DM; 0.36 mg/kg DM in control) supplementation, but not (<I>P</I> > 0.05) by SS (0.49 mg/kg DM) supplementation. The concentration of Se in excreta was highest in the SS group. The activity of GSH-Px in breast meat was significant <I>P</I> < 0.05) in all treatments (0.16 U/g in control, 0.30 U/g in SS and 0.23 U/g in SCH group). The inclusion of SCH in the diet enhanced the oxidative stability of meat expressed as reduced malondialdehyde (MDA) values in breast meat after 0; 3 and 5 days storage in refrigerator at 3 to 5°C.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Sun Kwang Kim ◽  
Jeungshin Kim ◽  
Eunjung Ko ◽  
Hyunseong Kim ◽  
Deok-Sang Hwang ◽  
...  

Clinical evidence indicates that electroacupuncture (EA) is effective for allergic disorder. Recent animal studies have shown that EA treatment reduces levels of IgE and Th2 cytokines in BALB/c mice immunized with 2,4-dinitrophenylated keyhole limpet protein (DNP-KLH). The hypothalamus, a brain center of the neural-immune system, is known to be activated by EA stimulation. This study was performed to identify and characterize the differentially expressed genes in the hypothalamus of DNP-KLH immunized mice that were stimulated with EA or only restrained. To this aim, we conducted a microarray analysis to evaluate the global gene expression profiles, using the hypothalamic RNA samples taken from three groups of mice: (i) normal control group (no treatments); (ii) IMH group (DNP-KLH immunization + restraint); and (iii) IMEA group (immunization + EA stimulation). The microarray analysis revealed that total 39 genes were altered in their expression levels by EA treatment. Ten genes, including T-cell receptor alpha variable region family 13 subfamily 1 (Tcra-V13.1), heat shock protein 1B (Hspa1b) and 2′–5′oligoadenylate synthetase 1F (Oas1f), were up-regulated in the IMEA group when compared with the IMH group. In contrast, 29 genes, including decay accelerating factor 2 (Daf2), NAD(P)H dehydrogenase, quinone 1 (Nqo1) and programmed cell death 1 ligand 2 (Pdcd1lg2) were down-regulated in the IMEA group as compared with the IMH group. These results suggest that EA treatment can modulate immune response in DNP-KLH immunized mice by regulating expression levels of genes that are associated with innate immune, cellular defense and/or other kinds of immune system in the hypothalamus.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5078-5078
Author(s):  
Monika Belickova ◽  
Alzbeta Vasikova ◽  
Eva Budinska ◽  
Jaroslav Cermak

Abstract Myelodysplatic syndrome (MDS) represents a heterogeneous group of clonal disorders with ineffective hematopoiesis that is characterized by dysplasia and peripheral cytopenia of one or more cell lineages. We studied gene expression profiles in CD34+ cells of 42 MDS patients and 6 healthy controls using Illumina cDNA microarray technology. Nine patients had RA, 7 patients had RCMD, 17 patients had RAEB and 9 had RAEB-T. CD34+ cells were isolated from bone marrow samples using MACS magnetic columns. The quality of total extracted RNA was confirmed with the Agilent Bioanalyzer 2100. 200ng of total RNA was amplified using Illumina RNA amplification kit. cRNA targets were hybridized on the Sentrix HumanRef-8 BeadChips (&gt; 24 000 probes), which were scanned on the Illumina BeadStation 500. The data were pre-processed and normalized by lumi R package designed to preprocess the Illumina microarray data. Normalized data were filtered by detection p-value &lt;0.01, resulting in total number of 10 091 genes. This gene set was tested for differential expression between clinical groups and control group. For this purpose, statistical testing by ANOVA with correction for multiple testing problem by Bayesian thresholding was performed. Additionally, analysis by random-forests (RAFT) was performed. Significant genes from both analyses were merged resulting in 332 differentially expressed genes detected. Out of these, 79 genes showed ≥2.5 fold changes in gene expression between controls and all MDS groups (22 up-regulated and 57 down-regulated). Our findings were confirmed by real-time quantitative PCR for several genes (TaqMan Gene Expression Assays). We used DAVID database to annotate 79 selected genes: 8 of 22 up-regulated genes in MDS patients were recognized to play a role in regulation of transcription (LEO1, E2F6 and several zing finger proteins). A half of these over-expressed genes could not be annotated due to still unknown biological function. Within the set of the down-regulated genes in MDS patients those biological processes were predominantly detected: cell differentiation (KLF4, FOSL2, STK17B, BCL3, SNF1LK, ID2 etc.), response to stress (CXCL12, SMAD7, CYGB, etc.) and cell proliferation (MXD1, OSM, FTH1, KLF10 etc.). In the set of 31 genes with 5 fold decreased expression, we identified 8 genes involved in B-cell development. (VPREB1, VPREB3, CD79A, EBI2, LEF1, CXCL12, CTGF, GALNAC4S-6ST). RAFT analysis was performed also in the set of 332 statistically differentially expressed genes in order to evaluate accuracy of grouping the patients according their diagnosis. We detected strong heterogeneity in gene expression patterns within the MDS patients, especially in the RAEB group reflecting clinical diversity of MDS. Clustering analysis (Spearman correlation) showed that most of the RAEB-2 patients (7 out of 9) were clustered together with REAB-T whereas RAEB-1 clustered with RCMD or RA. These results underline the need of distinguishing RAEB-1 and RAEB-2 diagnosis according to WHO classification system, since their expression profiles are significantly different.


Sign in / Sign up

Export Citation Format

Share Document