scholarly journals The 2039 A/G FSH receptor gene polymorphism influences glucose metabolism in healthy men

Endocrine ◽  
2020 ◽  
Vol 70 (3) ◽  
pp. 629-634 ◽  
Author(s):  
Rossella Cannarella ◽  
Nicolò Musso ◽  
Rosita A. Condorelli ◽  
Marco Musmeci ◽  
Stefania Stefani ◽  
...  

Abstract Objective To assess the role of c. 2039 A/G (p. Asp680Ser) (rs6166) and c. −29 G/A (rs1394205) follicle-stimulating hormone receptor (FSHR) gene single nucleotide polymorphisms (SNPs) in a cohort of healthy men. Methods One-hundred twenty-seven healthy men underwent evaluation of the anthropometric parameters, assessment of metabolic and lipid profile, measurement FSH serum levels, and genotyping of both the aforementioned FSHR SNPs. Data grouped according to the FSHR rs6166 or rs1394205 genotypes underwent to statistical analysis. Main results The three groups of men for each FSHR SNP did not differ statistically significantly for body mass index and serum FSH levels. As for FSHR rs6166 SNP, glucose levels were significantly lower in men with the GG genotype compared with those with the AA genotype. Men with AG had lower insulin levels and HOMA index values compared with those carrying the genotype AA (p < 0.05). The GG group showed a negative correlation between serum FSH levels and insulin and between serum FSH levels and HOMA index (p < 0.05). In contrast, men grouped according to the FSHR rs1394205 genotype showed no significant difference in blood glucose, serum insulin levels, and HOMA index. The AG group showed a negative correlation between FSH insulin and between serum FSH levels and HOMA index (p < 0.05). Conclusions Men with the genotype GG of the FSHR rs6166 SNP have lower blood glucose levels than those with the AA genotype. Their FSH levels inversely correlated with insulin and HOMA index. In contrast, the genotype FSHR rs6166 A/G did not reveal any role of FSH on glucose metabolism in healthy men. The inverse relationship between FSH and insulin or HOMA index in the group with the genotype GG of the FSHR rs6166 SNP suggests a possible cross-talk between FSH and insulin.

2014 ◽  
Vol 11 (1) ◽  
pp. 24-31
Author(s):  
I I Dedov ◽  
G A Melnichenko ◽  
E A Troshina ◽  
N V Mazurina ◽  
N A Ogneva ◽  
...  

We’ve studied a carbohydrate metabolism in morbidly obese (MO) patients and the patients after bariatric surgery. The patients of the 1st group had BMI40 (n=22) and no history of diabetes mellitus. Patients after biliopancreatic diversion (BPD) performed for MO were included in the 2nd group (n=23). The 3rd group was a control group of normal weight healthy subjects (n=22). Blood glucose levels, insulin, GLP-1, GIP and glucagon during the OGTT (with 75 g of glucose) at 0, 30, 60 and 120 minutes were measured in all patients. In MO group fasting glucose levels were the highest. Impaired glucose metabolism was revealed in 68.2% of patients (n=10). Impaired fasting glucose (IFG) was diagnosed in 4 cases (18.2%), impaired glucose tolerance (IGT) in 11 patients (50%). In the BPD postprandial blood glucose levels (120 min) were lower if compared to the other groups. In 4 individuals (17.4%) we found postprandial hypoglycemia (2.8 mmol/l). Patients of the MO group had the highest fasting insulin levels and HOMA-IR (p0.001). The maximum of insulin concentration was seen on minute 30 of the OGTT in the 2nd and 3rd groups, and it was significantly higher in the post-bariatric patients (p=0.026). In MO group the maximum of the plasma insulin levels were on the 60th minute and were still elevated after 120 minutes. Fasting and stimulated (on the 30th minute) levels of GLP-1 were significantly higher after BPD (р=0.037 and p=0.022 at 0 and 30 min, respectively). Morbidly obese patients had higher fasting and stimulated GIP. Fasting glucagon concentrations were similar in the surgical and control groups, while the people with MO had higher initial levels of glucagon (p=0.013) and it was not suppressed during the OGTT (p=0.076). Glucose intolerance and insulin resistance incidence was higher in MO patients. Hyperglucagonemia, increased GIP and decreased GLP-1 levels are observed in MO patients. Stimulated plasma insulin and GLP-1 concentrations were significantly increased in patients who underwent BPD, and may cause postprandial hypoglycemia.


2018 ◽  
Vol 13 (12) ◽  
pp. 1934578X1801301 ◽  
Author(s):  
Sara De Martin ◽  
Daniela Gabbia ◽  
Maria Carrara ◽  
Nicola Ferri

Fucus vesiculosus and Ascophyllum nodosum have been traditionally used for the treatment of obesity and several gastrointestinal diseases. We have recently demonstrated that the phytocomplex obtained from these algae (Gdue™) controls postprandial glucose levels in a mouse model of steatohepatitis, a condition often associated with obesity and type 2 diabetes mellitus. We analyzed the effect of Gdue™ on HOMA index, waist circumference, fasting blood glucose and insulin levels in overweight or obese subjects. Waist circumference decreased significantly after 6 months of treatment (112 ± 17 at t0 vs 105 ± 13 cm after 6 months of treatment; p<0.0001). Both blood glucose and insulin levels were significantly reduced after 6 months of treatment with Gdue™ (110 ± 15 at t0 vs 98 ± 15 mg/dL after 6 months for glucose; p<0.0001; 22.6 ± 9.5 at t0 vs 17.8 ± 8.6 μU/mL after 6 months for insulin; p<0.05). Accordingly, HOMA index decreased significantly (6.103 ± 2.548 at t0 vs 4.419 ± 2.382 after 6 months; p<0.01), suggesting an improvement of insulin sensitivity status. This phytocomplex represents a useful dietary supplement for controlling relevant metabolic syndrome risk factors, such as waist circumference, fasting insulin and glucose levels.


2001 ◽  
Vol 171 (3) ◽  
pp. 551-556 ◽  
Author(s):  
ML Massa ◽  
MI Borelli ◽  
H Del Zotto ◽  
JJ Gagliardino

We correlated the changes in glucose-induced insulin secretion with those observed in glucose metabolism and hexokinase/glucokinase activity in islets from normal sucrose-fed hamsters. Blood glucose and insulin levels were measured in normal male hamsters fed with (S5) or without (C5) 10% sucrose in the drinking water for 5 weeks. Isolated islets (collagenase digestion) from both groups of animals were used to study insulin secretion, (14)CO(2) and (3)H(2)O production from D-[U-(14)C]-glucose and D-[5-(3)H]-glucose respectively, with 3.3 or 16.7 mM glucose in the medium, and hexokinase/glucokinase activity (fluorometric assay) in islet homogenates. Whereas S5 and C5 animals had comparable normal blood glucose levels, S5 showed higher insulin levels than C5 hamsters (2.3+/-0.1 vs 0.6+/-0.03 ng/ml, P<0.001). Islets from S5 hamsters released significantly more insulin than C5 islets in the presence of low and high glucose (3.3 mM glucose: 0.77+/-0.04 vs 0.20+/-0.06 pg/ng DNA/min, P<0.001; 16.7 mM glucose: 2.77+/-0.12 vs 0.85+/-0.06 pg/ng DNA/min, P<0.001) and produced significantly higher amounts of (14)CO(2) and (3)H(2)O at both glucose concentrations ((14)CO(2): 3.3 mM glucose: 0.27+/-0.01 vs 0.18+/-0.01, P<0.001; 16.7 mM glucose: 1.44+/-0.15 vs 0.96+/-0.08, P<0.02; (3)H(2)O: 3.3 mM glucose: 0.31+/-0.02 vs 0.15+/-0.01, P<0.001; 16.7 mM glucose: 1.46+/-0.20 vs 0.76+/-0.05 pmol glucose/ng DNA/min, P<0.005). The hexokinase K(m) and V(max) values from S5 animals were significantly higher than those from C5 ones (K(m): 100.14+/-7.01 vs 59.90+/- 3.95 microM, P<0.001; V(max): 0.010+/-0.0005 vs 0.008+/- 0.0006 pmol glucose/ng DNA/min, P<0.02). Conversely, the glucokinase K(m) value from S5 animals was significantly lower than in C5 animals (K(m): 15.31+/-2.64 vs 35.01+/-1.65 mM, P<0.001), whereas V(max) figures were within a comparable range in both groups (V(max): 0.048+/-0.009 vs 0.094+/-0.035 pmol glucose/ng DNA/min, not significant). The glucose phosphorylation ratio measured at 1 and 100 mM (hexokinase/glucokinase ratio) was significantly higher in S5 (0.26+/-0.02) than in C5 animals (0.11+/-0.01, P<0.005), and it was attributable to an increase in the hexokinase activity in S5 animals. In conclusion, sucrose administration increased the hexokinase/glucokinase activity ratio in the islets, which would condition the increase in glucose metabolism by beta-cells, and in beta-cell sensitivity and responsiveness to glucose. These results support the concept that increased hexokinase rather than glucokinase activity causes the beta-cell hypersensitivity to glucose, hexokinase being metabolically more active than glucokinase to up-regulate beta-cell function.


Author(s):  
Prathima Munichandrappa ◽  
Manjunath K. G. ◽  
Kiran C. ◽  
Anirudh Variyar

<p class="abstract"><strong>Background:</strong> <span lang="EN-IN">Acne is common skin problem among adolescents and young adults. Recently the role of insulin resistance in acne is being widely researched.</span>The o<span lang="EN-IN">bjectives of the study were to evaluate insulin resistance in acne, to compare the insulin resistance among cases and controls using homeostasis model assessment of insulin resistance</span></p><p class="abstract"><strong>Methods:</strong> <span lang="EN-IN">45 cases and 45 controls were recruited. Acne severity was graded using the global acne grading system(GAGS). Fasting glucose, fasting insulin levels were done and insulin resistance was assessed using homeostasis model assessment of insulin resistance (HOMA-IR)</span>.<strong></strong></p><p class="abstract"><strong>Results:</strong> <span lang="EN-IN">We did not find any statistically significant difference in fasting insulin levels between cases and controls. However, a weak positive correlation between acne severity and fasting insulin levels (r =0.3, p=0.04) were observed. Fasting glucose levels and HOMA-IR values observed between cases and controls were not statistically significant (p=0.05, p=0.59 respectively). </span></p><p class="abstract"><strong>Conclusions:</strong> <span lang="EN-IN">Our study did not suggest a major role of insulin resistance in acne.</span></p>


2021 ◽  
Author(s):  
Laura Lema-Pérez

Sugar, or technically known as glucose, is the main source of energy of all cells in the human body. The glucose homeostasis cycle is the mechanism to maintain blood glucose levels in a healthy threshold. When this natural mechanism is broken, many metabolic disorders appear such as diabetes mellitus, and some substances of interest, like glucose, are out of control. In the mechanism to maintain blood glucose, several organs are involved but the role of most of them has been disregarded in the literature. In this chapter, the main organs involved in such a mechanism and their role in glucose metabolism are described. Specifically, the stomach and small intestine, organs of the gastrointestinal system, are the first to play an important role in the regulatory system, because it is where carbohydrates are digested and absorbed as glucose into the bloodstream. Then glucose as a simple substance goes to the liver to be stored as glycogen. Glucose storage occurs due to the delivery of hormones from the pancreas, which produces, stores, and releases insulin and glucagon, two antagonistic hormones with an important role in glucose metabolism. The kidneys assist the liver in insulin clearance in the postprandial state and gluconeogenesis in the post absorptive state. Physiological aspects and the detailed role of every organ involved in glucose metabolism are described in this chapter.


Author(s):  
Minsoo Kang ◽  
Sun Kyoung Han ◽  
Suhyun Kim ◽  
Sungyeon Park ◽  
Yerin Jo ◽  
...  

Abstract Hepatic gluconeogenesis is the central pathway for glucose generation in the body. The imbalance between glucose synthesis and uptake leads to metabolic diseases such as obesity, diabetes, and cardiovascular diseases. Small leucine zipper protein (sLZIP) is an isoform of LZIP and it mainly functions as a transcription factor. Although sLZIP is known to regulate the transcription of genes involved in various cellular processes, the role of sLZIP in hepatic glucose metabolism is not known. In this study, we investigated the regulatory role of sLZIP in hepatic gluconeogenesis and its involvement in metabolic disorder. We found that sLZIP expression was elevated during glucose starvation, leading to the promotion of phosphoenolpyruvate carboxylase and glucose-6-phosphatase expression in hepatocytes. However, sLZIP knockdown suppressed the expression of the gluconeogenic enzymes under low glucose conditions. sLZIP also enhanced glucose production in the human liver cells and mouse primary hepatic cells. Fasting-induced cyclic adenosine monophosphate impeded sLZIP degradation. Results of glucose and pyruvate tolerance tests showed that sLZIP transgenic mice exhibited abnormal blood glucose metabolism. These findings suggest that sLZIP is a novel regulator of gluconeogenic enzyme expression and plays a role in blood glucose homeostasis during starvation.


1964 ◽  
Vol 207 (2) ◽  
pp. 411-414 ◽  
Author(s):  
Jiro Oyama ◽  
William T. Platt

Unrestrained mice were centrifuged for varying periods ranging from 0.5 to 10 hr at 2.5, 5, and 10 x gravity. Liver glycogen and blood glucose levels increased significantly depending on the g load and exposure time. Adrenalectomy completely abolished the glycogen deposition response. The glycogen response was a critical function of the age of mice; unweaned mice did not respond. Blood corticosterone increased significantly prior to the deposition of glycogen. Centrifuged fed mice deposited three times the amount of glycogen of fasted mice. There was no significant difference in the amount of glycogen deposited in centrifuged mice previously starved for 1, 2, or 3 days. It is concluded that the increased glycogen deposited following centrifugation is effected by an increased elaboration of adrenal corticosterone.


2021 ◽  
Vol 8 (2) ◽  
pp. 217-220
Author(s):  
Thatit Nurmawati ◽  
Sandi Alfa Wiga Arsa ◽  
Nawang Wulandari ◽  
Agus Saparudin

Maintaining a lifestyle can reduce the incidence of DM (diabetes mellitus). DM occurs due to insulin disorders so that blood glucose levels increase, which can lead to various complications. The management of blood glucose levels by activating the insulin function can be done by using natural ingredients such as the Yakon (Smallanthus sonchifolius) plant. Yakon leaves contain phenol which can reduce blood glucose. The design of this study was experimental with a pre-posttest approach with control-group design, using male and healthy white rats (Rattus norvegicus). Rats were divided into 3 groups, treatment dose 1, treatment dose 2 and control. The rats were given a high carbohydrate diet during 9 weeks to make the rats hyperglycemic. In the treatment group, dose 1 was 150 mg/kg BW, dose 2 was 300 mg kg BW, and was given for 3 days. The results showed that the rats in the treatment group dose 1 had decreased in the average blood sugar level of 114.10 mg / dl (p 0.002) and dose 2 was 105.27 mg / dl (p 0.005). This showed that there was an effect of treatments on blood sugar levels. The comparison results showed that there was a significant difference between the dose 1, the dose 2 group and the control (Sig. (2-tailed) = 0.001 (α) = 0.05). There was no significant difference in the treatment group dose 1 and treatment dose 2 (Sig. (2-tailed) = 0.693, (α) = 0.05). Yakon leaves can be used alternative to lower to control blood glucose levels in rats receiving a high-carbohydrate diet


2007 ◽  
Vol 34 (6) ◽  
pp. 916-925 ◽  
Author(s):  
M. L. Soto-Montenegro ◽  
J. J. Vaquero ◽  
C. Arango ◽  
G. Ricaurte ◽  
P. García-Barreno ◽  
...  

Author(s):  
Eric Martial Deutchoua Ngounou ◽  
Yannick Dimitry Mang ◽  
Faustin Dongmo ◽  
Oumar Waassili Ibrahim Malla ◽  
Sélestin Sokeng Dongmo ◽  
...  

Aim and objective: Clerodendrum thomsoniae leaves are used in Cameroon to manage diabetes and its related disorders. The study aimed at investigating the antidiabetic effect of the aqueous extract on diet and dexamethasone induced diabetic rats. Methods: Young mature leaves of C thomsoniae were dried, finely powdered and submitted to aqueous extraction. The dehydrated extract was tested in rats at 3 doses 312.5, 625 and 1250 mg/kg based on the local use of the plant. The effect of the extract on the fasting blood glucose in normoglycemic rats and MACAPOS 1 type diet induced diabetic rats, using respectively glibenclamide and metformin as positive control groups, were investigated. Results: AECT significantly reduced blood glucose levels in normoglycemic rats (p<0.05) two hours after administration, from 83±2 mg/dL to 57.39±1.7 mg/dL with the dose of 1250 mg/kg. given the highest reduction rate of 30.86%. In normoglycemic rats 30 minutes after oral glucose overload, the maximum reduction rate was observed with glibenclamide 5 mg / kg and calculated at 49.90% followed by 36.39%, for the extract at 1250 mg / kg. After 30 days of repeated oral administration, AECT produced a reduction on blood glucose levels (p<0.05) in type 2 diabetic rats. This reduction in blood sugar was much more expressed with the dose of 1250mg/kg (73.52±0.71 mg/dL) followed by metformin 38mg/kg (70.21±0.89 mg/dL) as the normal control with no significant difference (P < 0.05). Conclusion: These results show that the antidiabetic activity of AECT can be explained by insulin stimulating effect, also give support to the traditional use of this plant.                   Peer Review History: Received 11 May 2021; Revised 17 June; Accepted 27 June, Available online 15 July 2021 Academic Editor: Dr. Asia Selman Abdullah,  Al-Razi university, Department of Pharmacy, Yemen, [email protected] UJPR follows the most transparent and toughest ‘Advanced OPEN peer review’ system. The identity of the authors and, reviewers will be known to each other. This transparent process will help to eradicate any possible malicious/purposeful interference by any person (publishing staff, reviewer, editor, author, etc) during peer review. As a result of this unique system, all reviewers will get their due recognition and respect, once their names are published in the papers. We expect that, by publishing peer review reports with published papers, will be helpful to many authors for drafting their article according to the specifications. Auhors will remove any error of their article and they will improve their article(s) according to the previous reports displayed with published article(s). The main purpose of it is ‘to improve the quality of a candidate manuscript’. Our reviewers check the ‘strength and weakness of a manuscript honestly’. There will increase in the perfection, and transparency.  Received file:                Reviewer's Comments: Average Peer review marks at initial stage: 6.5/10 Average Peer review marks at publication stage: 8.0/10 Reviewer(s) detail: Dr. Terhemen Festus Swem, Department of Veterinary Physiology and Biochemistry, College of Veterinary Medicine, Federal University of Agriculture, Makurdi, Benue State, Nigeria, [email protected] Taha A.I. El Bassossy, Medicinal and Aromatic Plants Department, Desert Research Center, Cairo, Egypt, [email protected] Prof. Dr. Ali Gamal Ahmed Al-kaf, Sana'a university, Yemen, [email protected]   Similar Articles: ANTIDIABETIC AND ANTIHYPERLIPIDEMIC ACTIVITY OF DRACAENA CINNABARI BALF. RESIN ETHANOLIC EXTRACT OF SOQATRA ISLAND IN EXPERIMENTAL ANIMALS THE SCOPING REVIEW OF CHINESE AND WESTERN MEDICINE TREATMENT OF DIABETIC FOOT IN ASIA ANTIHYPERGLYCEMIC AND ANTI-OXIDANT POTENTIAL OF ETHANOL EXTRACT OF VITEX THYRSIFLORA LEAVES ON DIABETIC RATS EFFECTS OF EMODIN ON BLOOD GLUCOSE AND BODY WEIGHT IN TYPE 1 DIABETIC RATS


Sign in / Sign up

Export Citation Format

Share Document