PD-1/PD-L1 signal pathway participates in HCV F protein-induced T cell dysfunction in chronic HCV infection

2015 ◽  
Vol 64 (2) ◽  
pp. 412-423 ◽  
Author(s):  
Wen Xiao ◽  
Long Feng Jiang ◽  
Xiao Zhao Deng ◽  
Dan Yan Zhu ◽  
Jia Ping Pei ◽  
...  
Hepatology ◽  
2003 ◽  
Vol 38 ◽  
pp. 350-350
Author(s):  
H SPANGENBERG ◽  
N KERSTING ◽  
S VIAZOW ◽  
M ROGGENDORF ◽  
F VONWEIZSACKER ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 374 ◽  
Author(s):  
Faria Ahmed ◽  
Andrea Ibrahim ◽  
Curtis L. Cooper ◽  
Ashok Kumar ◽  
Angela M. Crawley

Chronic hepatitis C virus (HCV) infection causes generalized CD8+ T cell impairment, not limited to HCV-specific CD8+ T-cells. Liver-infiltrating monocyte-derived macrophages (MDMs) contribute to the local micro-environment and can interact with and influence cells routinely trafficking through the liver, including CD8+ T-cells. MDMs can be polarized into M1 (classically activated) and M2a, M2b, and M2c (alternatively activated) phenotypes that perform pro- and anti-inflammatory functions, respectively. The impact of chronic HCV infection on MDM subset functions is not known. Our results show that M1 cells generated from chronic HCV patients acquire M2 characteristics, such as increased CD86 expression and IL-10 secretion, compared to uninfected controls. In contrast, M2 subsets from HCV-infected individuals acquired M1-like features by secreting more IL-12 and IFN-γ. The severity of liver disease was also associated with altered macrophage subset differentiation. In co-cultures with autologous CD8+ T-cells from controls, M1 macrophages alone significantly increased CD8+ T cell IFN-γ expression in a cytokine-independent and cell-contact-dependent manner. However, M1 macrophages from HCV-infected individuals significantly decreased IFN-γ expression in CD8+ T-cells. Therefore, altered M1 macrophage differentiation in chronic HCV infection may contribute to observed CD8+ T-cell dysfunction. Understanding the immunological perturbations in chronic HCV infection will lead to the identification of therapeutic targets to restore immune function in HCV+ individuals, and aid in the mitigation of associated negative clinical outcomes.


2006 ◽  
Vol 44 (01) ◽  
Author(s):  
T Killinger ◽  
C Neumann-Häfelin ◽  
J Timm ◽  
D McKinney ◽  
HC Spangenberg ◽  
...  

2020 ◽  
Vol 134 (12) ◽  
pp. 1449-1456
Author(s):  
Parimala Narne

Abstract Hepatitis C virus (HCV) infection and chronic hepatitis C (CHC) are associated with a measurable risk of insulin resistance (IR)/impaired glucose tolerance (IGT)/diabetes mellitus (DM). While loss of hepatic endocrine function contributes to liver cirrhosis in diabetic patients, onset and progression of IR/IGT to diabetes and exacerbation of incident hyperglycemia are ostensibly linked with chronic HCV infection. In this regard, the study by Chen J et al. appearing in Clinical Science (2020) (134(5) https://doi.org/10.1042/CS20190900) attempts to understand the mechanisms underlying the savaging effects of chronic HCV infection on insulin-producing pancreatic β-cells and hence diabetic onset. The study investigated the role of mitogen-activated protein kinase (MAPK) p38δ–protein kinase D (PKD)–golgi complex axis in impacting insulin exocytosis. It was inferred that an insulin secretory defect of pancreatic β-cells, owing to disrupted insulin exocytosis, to an extent explains β-cell dysfunction in HCV-infected or CHC milieu. HCV infection negatively regulates first-phase and second-phase insulin secretion by impinging on PKD-dependent insulin secretory granule fission at trans-golgi network and insulin secretory vesicle membrane fusion events. This commentary highlights the study in question, that deciphered the contribution of p38δ MAPK–PKD–golgi complex axis to β-cell dysfunction in CHC milieu. This pivotal axis proffers a formidable therapeutic opportunity for alleviation of double burden of glucose abnormalities/DM and CHC.


Sign in / Sign up

Export Citation Format

Share Document