scholarly journals Structure-property relationships of electroluminescent polythiophenes: role of nitrogen-based heterocycles as side chains

2011 ◽  
Vol 34 (4) ◽  
pp. 713-726 ◽  
Author(s):  
S. Radhakrishnan ◽  
S. J. Ananthakrishnan ◽  
N. Somanathan
Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2639
Author(s):  
Pingping Jiang ◽  
Pascal Boulet ◽  
Marie-Christine Record

This paper reports a Density Functional Theory (DFT) investigation of the electron density and optoelectronic properties of two-dimensional (2D) MX2 (M = Mo, W and X = S, Se, Te) subjected to biaxial strains. Upon strains ranging from −4% (compressive strain) to +4% (tensile strain), MX2 bilayers keep the same bandgap type but undergo a non-symmetrical evolution of bandgap energies and corresponding effective masses of charge carriers (m*). Despite a consistency regarding the electronic properties of Mo- and WX2 for a given X, the strain-induced bandgap shrinkage and m* lowering are strong enough to alter the strain-free sequence MTe2, MSe2, MS2, thus tailoring the photovoltaic properties, which are found to be direction dependent. Based on the quantum theory of atoms in molecules, the bond degree (BD) at the bond critical points was determined. Under strain, the X-X BD decreases linearly as X atomic number increases. However, the kinetic energy per electron G/ρ at the bond critical point is independent of strains with the lowest values for X = Te, which can be related to the highest polarizability evidenced from the dielectric properties. A cubic relationship between the absolute BD summation of M-X and X-X bonds and the static relative permittivity was observed. The dominant position of X-X bond participating in this cubic relationship in the absence of strain was substantially reinforced in the presence of strain, yielding the leading role of the X-X bond instead of the M-X one in the photovoltaic response of 2D MX2 material.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2188
Author(s):  
Pingping Jiang ◽  
Pascal Boulet ◽  
Marie-Christine Record

Two-dimensional MX (M = Ga, In; X = S, Se, Te) homo- and heterostructures are of interest in electronics and optoelectronics. Structural, electronic and optical properties of bulk and layered MX and GaX/InX heterostructures have been investigated comprehensively using density functional theory (DFT) calculations. Based on the quantum theory of atoms in molecules, topological analyses of bond degree (BD), bond length (BL) and bond angle (BA) have been detailed for interpreting interatomic interactions, hence the structure–property relationship. The X–X BD correlates linearly with the ratio of local potential and kinetic energy, and decreases as X goes from S to Te. For van der Waals (vdW) homo- and heterostructures of GaX and InX, a cubic relationship between microscopic interatomic interaction and macroscopic electromagnetic behavior has been established firstly relating to weighted absolute BD summation and static dielectric constant. A decisive role of vdW interaction in layer-dependent properties has been identified. The GaX/InX heterostructures have bandgaps in the range 0.23–1.49 eV, absorption coefficients over 10−5 cm−1 and maximum conversion efficiency over 27%. Under strain, discordant BD evolutions are responsible for the exclusively distributed electrons and holes in sublayers of GaX/InX. Meanwhile, the interlayer BA adjustment with lattice mismatch explains the constraint-free lattice of the vdW heterostructure.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2260
Author(s):  
Tamara Al-Faouri ◽  
Francis L. Buguis ◽  
Saba Azizi Soldouz ◽  
Olga V. Sarycheva ◽  
Burhan A. Hussein ◽  
...  

A bio-inspired family of organic dyes with bichromic-bipodal architectures were synthesized and tested in dye-sensitized solar cells (DSSC). These dyes are comprised of a D-π-D-A motif with two triphenylamine (TPA) units acting as donors (D) and two cyanoacetic acid acceptors (A) capable of binding to a titania semiconductor. The role of the thiophene π-spacer bridging the two TPA units was examined and the distal TPA (relative to TiO2) was modified with various substituents (-H, -OMe, -SMe, -OHex, -3-thienyl) and contrasted against benchmark L1. It was found that the two TPA donor units could be tuned independently, where π-spacers can tune the proximal TPA and R-substituents can tune the distal TPA. The highest performing DSSCs were those with -SMe, 3-thienyl, and -H substituents, and those with one spacer or no spacers. The donating abilities of R-substituents was important, but their interactions with the electrolyte was more significant in producing high performing DSSCs. The introduction of one π-spacer provided favourable electronic communication within the dye, but more than one was not advantageous.


RSC Advances ◽  
2017 ◽  
Vol 7 (41) ◽  
pp. 25444-25449 ◽  
Author(s):  
Jian Liu ◽  
Yuchen Shi ◽  
Jingchuan Wu ◽  
Mei Li ◽  
Jianming Zheng ◽  
...  

A series of novel conducting conjugated yellow-to-transmissive electrochromic (EC) polymers were designed to research their structure–property relationships, achieving electrofluorescent (EF) switching with applied external potential.


2022 ◽  
Vol 23 (2) ◽  
pp. 799
Author(s):  
Svetlana A. Sorokina ◽  
Stepan P. Mikhailov ◽  
Nina V. Kuchkina ◽  
Alexey V. Bykov ◽  
Alexander L. Vasiliev ◽  
...  

Hydrogenation of levulinic acid (LA) obtained from cellulose biomass is a promising path for production of γ-valerolactone (GVL)—a component of biofuel. In this work, we developed Ru nanoparticle containing nanocomposites based on hyperbranched pyridylphenylene polymer, serving as multiligand and stabilizing matrix. The functionalization of the nanocomposite with sulfuric acid significantly enhances the activity of the catalyst in the selective hydrogenation of LA to GVL and allows the reaction to proceed under mild reaction conditions (100 °C, 2 MPa of H2) in water and low catalyst loading (0.016 mol.%) with a quantitative yield of GVL and selectivity up to 100%. The catalysts were successfully reused four times without a significant loss of activity. A comprehensive physicochemical characterization of the catalysts allowed us to assess structure-property relationships and to uncover an important role of the polymeric support in the efficient GVL synthesis.


2007 ◽  
Vol 62 (22) ◽  
pp. 6222-6233 ◽  
Author(s):  
Mordechai Shacham ◽  
Olaf Kahrs ◽  
Georgi St. Cholakov ◽  
Roumiana P. Stateva ◽  
Wolfgang Marquardt ◽  
...  

2017 ◽  
Vol 3 (10) ◽  
pp. 1700189 ◽  
Author(s):  
Stephanie L. Moffitt ◽  
Qimin Zhu ◽  
Qing Ma ◽  
Allison F. Falduto ◽  
D. Bruce Buchholz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document