scholarly journals Ru@hyperbranched Polymer for Hydrogenation of Levulinic Acid to Gamma-Valerolactone: The Role of the Catalyst Support

2022 ◽  
Vol 23 (2) ◽  
pp. 799
Author(s):  
Svetlana A. Sorokina ◽  
Stepan P. Mikhailov ◽  
Nina V. Kuchkina ◽  
Alexey V. Bykov ◽  
Alexander L. Vasiliev ◽  
...  

Hydrogenation of levulinic acid (LA) obtained from cellulose biomass is a promising path for production of γ-valerolactone (GVL)—a component of biofuel. In this work, we developed Ru nanoparticle containing nanocomposites based on hyperbranched pyridylphenylene polymer, serving as multiligand and stabilizing matrix. The functionalization of the nanocomposite with sulfuric acid significantly enhances the activity of the catalyst in the selective hydrogenation of LA to GVL and allows the reaction to proceed under mild reaction conditions (100 °C, 2 MPa of H2) in water and low catalyst loading (0.016 mol.%) with a quantitative yield of GVL and selectivity up to 100%. The catalysts were successfully reused four times without a significant loss of activity. A comprehensive physicochemical characterization of the catalysts allowed us to assess structure-property relationships and to uncover an important role of the polymeric support in the efficient GVL synthesis.

2014 ◽  
Vol 91 ◽  
pp. 54-63 ◽  
Author(s):  
Gudrun Reichenauer

Aerogels are porous materials with potential applications in fields ranging from thermal insulation, catalyst support, filters, electrical storage, components in optical devices, mechanical damping all the way to drug release. However, careful reliable characterization is the base for both, understanding of fundamental structure - property relationships as well as a directed development of materials and composites for specific applications. The review therefore addressed severe problem upon aerogel characterization that have been identified in the past and presents reliable non-destructive alternatives and novel methods that can be applied for the characterization of aerogels as well as their gel precursors.


2018 ◽  
Vol 16 (1) ◽  
pp. 605-613 ◽  
Author(s):  
Vivek Srivastava

AbstractWe successfully synthesized Pd@MMT clay using a cation exchange process. We characterized all the synthesized Pd@MMT clays using sophisticated analytical techniques before testing them as a heterogeneous catalyst for the Mizoroki - Heck reaction (mono and double). The highest yield of the Mizoroki-Heck reaction product was recovered using thermally stable and highly reactive Pd@ MMT-1 clay catalyst in the functionalized ionic liquid reaction medium. We successfully isolated 2-aryl-vinyl phosphonates (mono-Mizoroki-Heck reaction product) and 2,2-diaryl-vinylphosphonates (double-Mizoroki-Heck reaction product) using aryl halides and dialkyl vinyl phosphonates in higher yields. The low catalyst loading, easy recovery of reaction product and 8 times catalyst recycling are the major highlights of this proposed protocol.


2017 ◽  
Vol 46 (25) ◽  
pp. 8304-8305
Author(s):  
Dalia M. Abdel Basset ◽  
Suresh Mulmi ◽  
Mohammed S. El-Bana ◽  
Suzan S. Fouad ◽  
Venkataraman Thangadurai

Correction for ‘Synthesis and characterization of novel Li-stuffed garnet-like Li5+2xLa3Ta2−xGdxO12 (0 ≤ x ≤ 0.55): structure–property relationships’ by Dalia M. Abdel Basset, et al., Dalton Trans., 2017, 46, 933–946.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2639
Author(s):  
Pingping Jiang ◽  
Pascal Boulet ◽  
Marie-Christine Record

This paper reports a Density Functional Theory (DFT) investigation of the electron density and optoelectronic properties of two-dimensional (2D) MX2 (M = Mo, W and X = S, Se, Te) subjected to biaxial strains. Upon strains ranging from −4% (compressive strain) to +4% (tensile strain), MX2 bilayers keep the same bandgap type but undergo a non-symmetrical evolution of bandgap energies and corresponding effective masses of charge carriers (m*). Despite a consistency regarding the electronic properties of Mo- and WX2 for a given X, the strain-induced bandgap shrinkage and m* lowering are strong enough to alter the strain-free sequence MTe2, MSe2, MS2, thus tailoring the photovoltaic properties, which are found to be direction dependent. Based on the quantum theory of atoms in molecules, the bond degree (BD) at the bond critical points was determined. Under strain, the X-X BD decreases linearly as X atomic number increases. However, the kinetic energy per electron G/ρ at the bond critical point is independent of strains with the lowest values for X = Te, which can be related to the highest polarizability evidenced from the dielectric properties. A cubic relationship between the absolute BD summation of M-X and X-X bonds and the static relative permittivity was observed. The dominant position of X-X bond participating in this cubic relationship in the absence of strain was substantially reinforced in the presence of strain, yielding the leading role of the X-X bond instead of the M-X one in the photovoltaic response of 2D MX2 material.


2021 ◽  
Vol 18 ◽  
Author(s):  
Vivek Srivastava

: In the present manuscript, we easily synthesized three different types of ionic liquid supported 3-quinuclidinone organocatalysts such as [PyAmEQ][BF4] (Py-CATALYST-1), [PyAmEQ][PF6] (Py-CATALYST-2), and [PyAmEQ][NTf2] (Py-CATALYST-3). After performing the careful characterization of the above catalysts with sophisticated analytical techniques, we utilized them as a catalyst to study the passive Morita-Baylis-Hillman reaction. The corresponding Morita-Baylis-Hillman adducts were easily isolated, followed by the simple ether extraction method. Moreover, the above protocol also promoted low catalyst loading, short reaction time, wide substrate scope, easy product, and catalyst recycling. We easily recycled the catalytic system for 5 runs with no noticeable loss in the chemical yield. Additionally, Py-CATALYST-3 was also used to prepare biologically active materials, i.e., N-((E,3S,4R)-5-benzylidene-tetrahydro-4-hydroxy-6-oxo-2H-pyran-3-yl) palmitamide derivatives.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2188
Author(s):  
Pingping Jiang ◽  
Pascal Boulet ◽  
Marie-Christine Record

Two-dimensional MX (M = Ga, In; X = S, Se, Te) homo- and heterostructures are of interest in electronics and optoelectronics. Structural, electronic and optical properties of bulk and layered MX and GaX/InX heterostructures have been investigated comprehensively using density functional theory (DFT) calculations. Based on the quantum theory of atoms in molecules, topological analyses of bond degree (BD), bond length (BL) and bond angle (BA) have been detailed for interpreting interatomic interactions, hence the structure–property relationship. The X–X BD correlates linearly with the ratio of local potential and kinetic energy, and decreases as X goes from S to Te. For van der Waals (vdW) homo- and heterostructures of GaX and InX, a cubic relationship between microscopic interatomic interaction and macroscopic electromagnetic behavior has been established firstly relating to weighted absolute BD summation and static dielectric constant. A decisive role of vdW interaction in layer-dependent properties has been identified. The GaX/InX heterostructures have bandgaps in the range 0.23–1.49 eV, absorption coefficients over 10−5 cm−1 and maximum conversion efficiency over 27%. Under strain, discordant BD evolutions are responsible for the exclusively distributed electrons and holes in sublayers of GaX/InX. Meanwhile, the interlayer BA adjustment with lattice mismatch explains the constraint-free lattice of the vdW heterostructure.


1989 ◽  
Vol 156 ◽  
Author(s):  
Aaron Wold ◽  
Kirby Dwight

ABSTRACTThe structure-property relationships of several conducting transition metal oxides, as well as their preparative methods, are presented in this paper. The importance of preparing homogeneous phases with precisely known stoichiometry is emphasized. A comparison is also made of the various techniques used to prepare both polycrystalline and single crystal samples. For transition metal oxides, the metallic properties are discussed either in terms of metal-metal distances which are short enough to result in metallic behavior, or in terms of the formation of a П* conduction band resulting from covalent metal-oxygen interactions. Metallic behavior is observed when the conduction bands are populated with either electrons or holes. The concentration of these carriers can be affected by either cation or anion substitutions. The discussion in this presentation will be limited to the elements Re, Ti, V, Cr, Mo, and Cu.


2014 ◽  
Vol 1673 ◽  
Author(s):  
Jason E. Bara ◽  
Matthew S. Shannon ◽  
W. Jeffrey Horne ◽  
John W. Whitley ◽  
Haining Liu ◽  
...  

ABSTRACTImidazoles present a tunable, versatile and economical platform for the development of novel liquid solvents and polymer membranes for CO2 capture. An overview of our studies in this area is presented, with emphasis on characterization of structure-property relationships in imidazole-based materials through both experimental and computational studies. To this end, a growing library of systematically varied imidazole compounds has been synthesized using only commercial available starting materials and straightforward reactions. Using this library of compounds, we have sought to understand and develop predictive models for thermophysical properties relating to process design, including: density, viscosity, vapor pressure, pKa and CO2 absorption capacity. Furthermore, we have discovered that imidazoles are stable in the presence of SO2 and can form reversible 1:1 adducts, which can be beneficial as SO2 is typically present at ppm levels alongside CO2 in flue gas from coal-fired power plants.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2260
Author(s):  
Tamara Al-Faouri ◽  
Francis L. Buguis ◽  
Saba Azizi Soldouz ◽  
Olga V. Sarycheva ◽  
Burhan A. Hussein ◽  
...  

A bio-inspired family of organic dyes with bichromic-bipodal architectures were synthesized and tested in dye-sensitized solar cells (DSSC). These dyes are comprised of a D-π-D-A motif with two triphenylamine (TPA) units acting as donors (D) and two cyanoacetic acid acceptors (A) capable of binding to a titania semiconductor. The role of the thiophene π-spacer bridging the two TPA units was examined and the distal TPA (relative to TiO2) was modified with various substituents (-H, -OMe, -SMe, -OHex, -3-thienyl) and contrasted against benchmark L1. It was found that the two TPA donor units could be tuned independently, where π-spacers can tune the proximal TPA and R-substituents can tune the distal TPA. The highest performing DSSCs were those with -SMe, 3-thienyl, and -H substituents, and those with one spacer or no spacers. The donating abilities of R-substituents was important, but their interactions with the electrolyte was more significant in producing high performing DSSCs. The introduction of one π-spacer provided favourable electronic communication within the dye, but more than one was not advantageous.


2002 ◽  
Vol 75 (5) ◽  
pp. 853-864 ◽  
Author(s):  
Judit E. Puskas ◽  
Christophe Paulo ◽  
Volker Altstädt

Abstract Structure-property relationships were investigated in hyperbranched polyisobutylenes, in comparison with commercial linear butyl rubber. The gel-free, soluble hyperbranched polyisobutylenes, synthesized by living carbocationic polymerization, had molecular weights, Mw≈400,000 to 1,000,000 g/mol, molecular weight distributions, MWD ≈1.2 to 2.6, and branching frequencies, BR ≈ 4 to 60. The mechanical and viscoelastic characterization of these polymers revealed interesting properties, including the characteristics of crosslinked rubbers.


Sign in / Sign up

Export Citation Format

Share Document