Thermal conductivity studies on composites of poly(phenylene ether)/polyamide with hollow glass beads (HGB)

2021 ◽  
Vol 44 (2) ◽  
Author(s):  
ROSHAN JHA ◽  
JAN MATTHIJSSEN ◽  
RADHA KAMALAKARAN
2014 ◽  
Vol 988 ◽  
pp. 13-22 ◽  
Author(s):  
Yu Xin Zuo ◽  
Zheng Jun Yao ◽  
Jin Tang Zhou

Hollow glass beads / phenolic foam composites were prepared by molding method. The influence of HGB on thermal performance and mechanical properties of phenolic foams were investigated using thermal conductivity measurement, thermogravimetric analysis (TGA) and compression tester. The results show that the addition of hollow glass beads lead to a significant improvement in the compressive property of phenolic foams, with the compressive strength reaching the maximum adding 10% HGB and HGB pretreated by silicane coupling agent further enhance the compressive property. FT-IR spectroscopy shows the reaction between alcohol-OH groups on the surface of HGB and methoxy (-OCH3) groups on silane coupling agent (KH560). The morphology indicates the average cell size decreases with HGB content increasing up to 10%, and again the cell size of foams reinforced by pretreated HGB are better. Addition of HGB improved the thermal stability property of phenolic foams, due to the porosity was mainly responsible for thermal conductivity property of phenolic foams, so HGB filled materials achieved higher thermal conductivity.


2019 ◽  
Vol 54 (5) ◽  
pp. 607-615
Author(s):  
Jung Sub Kim ◽  
Chang Su Lee ◽  
Sang Won Lee ◽  
Sung-Min Kim ◽  
Jae Hyuk Choi ◽  
...  

This paper explores the characteristics of a new lightweight thermoplastic composite filament filled with hollow glass beads developed for material extrusion additive manufacturing. Compounding experiments, which mix hollow glass beads with neat acrylonitrile butadiene styrene matrix, were conducted using a twin-screw extruder to prepare composite filaments. Two different types of hollow glass beads were selected as the fillers of composite filament due to their varying densities. In order to characterize the final components produced using composite filament, various specimens were fabricated by a material extrusion additive manufacturing process. In order to characterize the physical properties of the specimens, measurements of density and flexural testing were performed. To identify the thermomechanical effects of hollow glass beads on the neat acrylonitrile butadiene styrene matrix, thermal diffusivity and specific heat were obtained. Consequently, the thermal conductivity of the specimen was derived from its density, thermal diffusivity, and specific heat capacity. The microstructures of the fractured interfaces of the specimens were also observed by scanning electron microscopy. The experimental results revealed that most of the hollow glass beads survived, thus bringing about lighter weight (lower density) and thermal insulation (lower thermal conductivity), which can be useful for numerous potential applications.


2010 ◽  
Vol 178 ◽  
pp. 318-323 ◽  
Author(s):  
Cong Chen ◽  
Fei Wang ◽  
Jin Sheng Liang ◽  
Qing Guo Tang

In this text, the effective thermal conductivity of different shape filler particles was investigated. The thermal insulation coatings were prepared using hollow glass beads and sepiolite as thermal insulation fillers and the thermal insulation effect was evaluated. The results show that the optimum ratio of sepiolite and hollow glass beads is 6:1, and the temperature difference of upper box and lower box is up to 18 °C. The main reason for this phenomenon is that the thermal conduction chain is difficult to form in the direction of heat flow, thus leading to the increase of thermal resistance and decrease of thermal conductivity.


2021 ◽  
pp. 089270572199319
Author(s):  
Gustavo B Carvalho

Ternary hybrid composites of Polypropylene (PP)/Short Glass Fibers (GF)/Hollow Glass Beads (HGB) were prepared using untreated and aminosilane-treated HGB, compatibilized with maleated-PP, and with varying total and relative GF/HGB contents. Static/short-term flexural strength properties data revealed, through lower flexural strength values, that the presence of untreated HGB particles induces to fiber-polymer interfacial decoupling at much higher extent than in the presence of aminosilane-treated HGB particles. This phenomenon is also evident when evaluating the data from displacement-controlled three-point bending fatigue tests. Monitored up to 106 cycles, the analyzed hybrid composites presented distinct performance relative to their fatigue stress relaxation rate: the lower the matrix-reinforcements’ interfacial adhesion, more pronounced the stress relaxation rate as a function of the number of fatigue cycles. Dynamic Mechanical Thermal Analysis (DMTA) results could successfully reveal the hybrid composites behavior at the microstructural level when they were submitted to both static flexural test and fatigue, depending on the degree of interfacial interactions between the polymer matrix of PP and the hybrid reinforcements of GF and HGB (with and without aminosilane surface treatment).


2012 ◽  
Vol 32 (4-5) ◽  
pp. 259-263 ◽  
Author(s):  
Ji-Zhao Liang ◽  
Ming-Qiang Zhong

Abstract Polypropylene (PP) composites filled with hollow glass beads (HGB) were prepared by means of a twin-screw extruder. The extrudate swell ratio (B) of the PP/HGB composite melts was measured using a melt flow indexer under experimental conditions, with temperatures from 190°C to 230°C and loads varying from 1.20 kg to 7.50 kg, to identify the effects of the extrusion conditions and the particle size and content on the extrudate swell of composite melts. The results showed that the value of B of the composites increased nonlinearly with an increase of shear stress, while it decreased linearly with a rise of temperature. When the load and temperature were constant, the value of B increased nonlinearly with an increase of the HGB diameter, whereas it reduced nonlinearly with an increase of the HGB volume fraction. This should be attributed to the elastic deformation energy stored in the flow of the composite melts, which was decreased with an increase of the HGB number and content.


2005 ◽  
Vol 52 (9) ◽  
pp. 145-152 ◽  
Author(s):  
S.-C. Kim ◽  
D.-K. Lee

Photocatalytic inactivation of algae, Anabaena, Microcystis, and Melosira, was carried out with TiO2-coated Pyrex hollow glass beads under the illumination of UV light (370nm wavelength). After being irradiated with UV light in the presence of the TiO2-coated Pyrex glass beads, Anabaena and Microcystis, known as typical cyanobacteria, lost their photosynthetic activity, and the string of Anabaena cells and the colonies of Microcystis cells were completely separated into individual spherical ones. In the case of Melosira, which is a typical diatom, however, somewhat lower photocatalytic inactivation efficiency was obtained, which was believed to be due to the presence of the inorganic siliceous wall surrounding the cells of Melosira. The TiO2-coated hollow glass beads could successfully be employed for the practical application in a eutrophicated river under sunlight. More than 50% of the chlorophyll-a concentration could be reduced by the action of TiO2 photocatalysis.


Sign in / Sign up

Export Citation Format

Share Document