Conditioned Medium from Adipose-Derived Stem Cells (ADSCs) Promotes Epithelial-to-Mesenchymal-Like Transition (EMT-Like) in Glioma Cells In vitro

2015 ◽  
Vol 53 (10) ◽  
pp. 7184-7199 ◽  
Author(s):  
Isabele C. Iser ◽  
Stefanie M. Ceschini ◽  
Giovana R. Onzi ◽  
Ana Paula S. Bertoni ◽  
Guido Lenz ◽  
...  
2013 ◽  
Vol 25 (1) ◽  
pp. 289
Author(s):  
K. C. S. Roballo ◽  
A. C. M. Ercolin ◽  
M. Bionaz ◽  
C. E. Ambrosio ◽  
M. B. Wheeler

Stroke, Parkinson’s, Alzheimer’s, and other neurological diseases that are relatively frequent in human involve loss of neurons. The advent of tissue regeneration using stem cells holds great promise in finding cures. In particular, mesenchymal stem cells (MSC) appear to be a very potent source for tissue regeneration. Among MSC subtypes, adipose-derived stem cells (ASC) have several distinct advantages. The ASC are abundant, are easy to isolate and expand in vitro, can be used for heterologous as well autologous transplants, and have multilineage differentiation capacity. In addition to osteocytes, chondrocytes, and adipocytes, the ASC have been successfully differentiated into neuronal-like cells by addition of specific neurogenic factors. However, in vivo differentiation of ASC into neurons remains to be demonstrated. In the present study, we used an in vitro system in order to evaluate whether ASC can be induced towards neurogenic lineages by physical contact with freshly isolated neurons or by factors released by neurons without addition of specific neurogenic factors. Experimentally, ASC and neurons (NEU) were extracted from the back fat or the brain, respectively, of a boar transgenic for green fluorescent protein (GFP) or from wild type pigs. The non-GFP neurons were isolated from the brain of 32-day fetuses or adult pigs. Cells were cultivated in 24-well plates with the following combinations: only ASC or NEU in DMEM (controls), ASC with conditioned medium from NEU, or ASC+NEU. Cells were harvested at 24 h and at 3, 7, 14, and 21 days and fixed with 4% paraformaldehyde in PBS for 15 min for immunohistochemistry analysis. After fixation, neuronal differentiation was evaluated by histological staining with specific neuronal markers. The proportion of ASC that differentiated into neuronal-like cells was determined using fluorescence microscopy. We observed little proliferation of ASC in conditioned medium compared with control ASC; however, a few cells exhibited neuronal-like morphology but with no expression of neuronal markers. When ASC were co-cultured with fetal NEU, starting at 3 days, we observed, using microscope analyses, that 4 to 12% of the ASC had neuronal-like morphology and expressed neuron-associated cell markers. When ASC were co-cultured with neurons from adult brain, we observed a lower fraction (between 1 and 2%) of neuronal differentiated cells starting at 7 days. Our data are preliminary but provide evidence that when ASC are in physical contact with neurons (i.e. by cell-to-cell interactions), they can be induced to differentiate into neuronal-like cells. Further, the differentiation is more rapid and extensive when the ASC are in direct contact with fetal neurons. However, further study is necessary to determine whether these neuronal-like cells are functional neurons. In this regard, we are performing electrophysiological analysis and measurement of expression of neuronal genes. In addition, flow cytometry will be used to quantify the proportion of differentiated ASC.


2021 ◽  
Vol 22 (2) ◽  
pp. 579
Author(s):  
Seok Hee Lee

An essential requirement for the success of in vitro maturation (IVM) of the oocyte is to provide an optimal microenvironment similar to in vivo conditions. Recently, somatic cell-based coculture or supplementation of a conditioned medium during IVM has been performed to obtain better quality of oocytes, because they mimic the in vivo reproductive tract by secreting paracrine factors. In this study, human adipose-derived stem cells (ASC) and their conditioned medium (ASC-CM) were applied to IVM of porcine oocytes to evaluate the effectiveness of ASC on oocyte development and subsequent embryo development. In results, both ASC and ASC-CM positively influence on oocyte maturation and embryo development by regulating growth factor receptors (VEGF, FGFR, and IGFR), apoptosis (BCL2), cumulus expansion (PTGS2, HAS2, and TNFAIP6), and oocyte maturation-related genes (GDF9 and BMP15). In particular, the fluorescence intensity of GDF9 and BMP15 was markedly upregulated in the oocytes from the ASC-CM group. Furthermore, significantly high levels of growth factors/cytokine including VEGF, bFGF, IGF-1, IL-10, and EGF were observed in ASC-CM. Additionally, the ASC-CM showed active scavenging activity by reducing the ROS production in a culture medium. Consequently, for the first time, this study demonstrated the effect of human ASC-CM on porcine oocyte development and the alteration of mRNA transcript levels in cumulus–oocyte complexes.


2020 ◽  
Vol 15 (9) ◽  
pp. 2085-2098
Author(s):  
Cristiana Marcozzi ◽  
Annalisa Frattini ◽  
Marina Borgese ◽  
Federica Rossi ◽  
Ludovica Barone ◽  
...  

Aim: The proposal of this study was to evaluate, in vitro, the potential paracrine effect of human adipose-derived stem cells (hASCs) to promote lymphangiogenesis in lymphatic endothelial cells isolated from rat diaphragmatic lymphatic vessels. Materials & methods: ELISA on VEGFA, VEGFC and IL6 in hASC-conditioned medium; LYVE1 immunostaining; and gene expression of PROX1, VEGFR3, VEGFC, VEGFA and IL6 were the methods used. Results: In 2D culture, hASC-conditioned medium was able to promote lymphatic endothelial cell survival, maintenance of endothelial cobblestone morphology and induction to form a vessel-like structure. Conclusion: The authors' results represent in vitro evidence of the paracrine effect of hASCs on lymphatic endothelial cells, suggesting the possible role of hASC-conditioned medium in developing new therapeutic approaches for lymphatic system-related dysfunction such as secondary lymphedema.


2021 ◽  
Vol 30 ◽  
pp. 096368972110354
Author(s):  
Eun-Jung Yoon ◽  
Hye Rim Seong ◽  
Jangbeen Kyung ◽  
Dajeong Kim ◽  
Sangryong Park ◽  
...  

Stamina-enhancing effects of human adipose derived stem cells (hADSCs) were investigated in young Sprague-Dawley rats. Ten-day-old male rats were transplanted intravenously (IV) or intracerebroventricularly (ICV) with hADSCs (1 × 106 cells/rat), and physical activity was measured by locomotor activity and rota-rod performance at post-natal day (PND) 14, 20, 30, and 40, as well as a forced swimming test at PND 41. hADSCs injection increased the moving time in locomotor activity, the latency in rota-rod performance, and the maximum swimming time. For the improvement of physical activity, ICV transplantation was superior to IV injection. In biochemical analyses, ICV transplantation of hADSCs markedly reduced serum creatine phosphokinase, lactate dehydrogenase, alanine transaminase, and muscular lipid peroxidation, the markers for muscular and hepatic injuries, despite the reduction in muscular glycogen and serum triglycerides as energy sources. Notably, hADSCs secreted brain-derived neurotrophic factor (BDNF) and nerve growth factor in vitro, and increased the level of BDNF in the brain and muscles in vivo. The results indicate that hADSCs enhance physical activity including stamina not only by attenuating tissue injury, but also by strengthening the muscles via production of BDNF.


2019 ◽  
Vol 103 (3) ◽  
pp. 925-934
Author(s):  
Eкaterina Vackova ◽  
Darko Bosnakovski ◽  
Bodil Bjørndal ◽  
Penka Yonkova ◽  
Natalia Grigorova ◽  
...  

2012 ◽  
Vol 32 (8) ◽  
pp. 1255-1263 ◽  
Author(s):  
Chengcheng Ying ◽  
Wanli Hu ◽  
Bei Cheng ◽  
Xinmin Zheng ◽  
Shiwen Li

Author(s):  
Jiang-wen Wang ◽  
Yuan-zheng Zhu ◽  
Xuan Hu ◽  
Jia-ying Nie ◽  
Zhao-hui Wang ◽  
...  

Background: The healing of diabetic wounds is poor due to a collagen deposition disorder. Matrix metalloproteinase-9 (MMP-9) is closely related to collagen deposition in the process of tissue repair. Many studies have demonstrated that extracellular vesicles derived from adipose-derived stem cells (ADSC-EVs) promote diabetic wound healing by enhancing collagen deposition. Objective: In this study, we explored if ADSC-EVs could downregulate the expression of MMP-9 in diabetic wounds and promote wound healing by improving collagen deposition. The potential effects of ADSC-EVs on MMP-9 and diabetic wound healing were tested both in vitro and in vivo. Methods: We first evaluated the effect of ADSC-EVs on the proliferation and MMP-9 secretion of HaCaT cells treated with advanced glycation end product-bovine serum albumin (AGE-BSA), using CCK-8 western blot and MMP-9 enzyme-linked immunosorbent assay(ELISA). Next, the effect of ADSC-EVs on the healing, re-epithelialisation, collagen deposition, and MMP-9 concentration in diabetic wound fluids was evaluated in an immunodeficient mouse model via MMP-9 ELISA and haematoxylin and eosin, Masson’s trichrome, and immunofluorescence staining for MMP-9. Results: In vitro, ADSC-EVs promoted the proliferation and MMP-9 secretion of HaCaT cells.In vivo, ADSC-EVs accelerated diabetic wound healing by improving re-epithelialisation and collagen deposition and by inhibiting the expression of MMP-9. Conclusion: ADSC-EVs possessed the healing of diabetic wounds in a mouse model by inhibiting downregulating MMP-9 and improving collagen deposition.Thus ,ADSC-EVs are a promising candidate for the treatment of diabetic wounds .


Sign in / Sign up

Export Citation Format

Share Document