scholarly journals Adenosine Signaling and Clathrin-Mediated Endocytosis of Glutamate AMPA Receptors in Delayed Hypoxic Injury in Rat Hippocampus: Role of Casein Kinase 2

Author(s):  
Xin Qin ◽  
Michael G. Zaki ◽  
Zhicheng Chen ◽  
Elisabet Jakova ◽  
Zhi Ming ◽  
...  

AbstractChronic adenosine A1R stimulation in hypoxia leads to persistent hippocampal synaptic depression, while unopposed adenosine A2AR receptor stimulation during hypoxia/reperfusion triggers adenosine-induced post-hypoxia synaptic potentiation (APSP) and increased neuronal death. Still, the mechanisms responsible for this adenosine-mediated neuronal damage following hypoxia need to be fully elucidated. We tested the hypothesis that A1R and A2AR regulation by protein kinase casein kinase 2 (CK2) and clathrin-dependent endocytosis of AMPARs both contribute to APSPs and neuronal damage. The APSPs following a 20-min hypoxia recorded from CA1 layer of rat hippocampal slices were abolished by A1R and A2AR antagonists and by broad-spectrum AMPAR antagonists. The inhibitor of GluA2 clathrin-mediated endocytosis Tat-GluA2-3Y peptide and the dynamin-dependent endocytosis inhibitor dynasore both significantly inhibited APSPs. The CK2 antagonist DRB also inhibited APSPs and, like hypoxic treatment, caused opposite regulation of A1R and A2AR surface expression. APSPs were abolished when calcium-permeable AMPAR (CP-AMPAR) antagonist (IEM or philanthotoxin) or non-competitive AMPAR antagonist perampanel was applied 5 min after hypoxia. In contrast, perampanel, but not CP-AMPAR antagonists, abolished APSPs when applied during hypoxia/reperfusion. To test for neuronal viability after hypoxia, propidium iodide staining revealed significant neuroprotection of hippocampal CA1 pyramidal neurons when pretreated with Tat-GluA2-3Y peptide, CK2 inhibitors, dynamin inhibitor, CP-AMPAR antagonists (applied 5 min after hypoxia), and perampanel (either at 5 min hypoxia onset or during APSP). These results suggest that the A1R-CK2-A2AR signaling pathway in hypoxia/reperfusion injury model mediates increased hippocampal synaptic transmission and neuronal damage via calcium-permeable AMPARs that can be targeted by perampanel for neuroprotective stroke therapy.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pojeong Park ◽  
John Georgiou ◽  
Thomas M. Sanderson ◽  
Kwang-Hee Ko ◽  
Heather Kang ◽  
...  

AbstractLong-term potentiation (LTP) at hippocampal CA1 synapses can be expressed by an increase either in the number (N) of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors or in their single channel conductance (γ). Here, we have established how these distinct synaptic processes contribute to the expression of LTP in hippocampal slices obtained from young adult rodents. LTP induced by compressed theta burst stimulation (TBS), with a 10 s inter-episode interval, involves purely an increase in N (LTPN). In contrast, either a spaced TBS, with a 10 min inter-episode interval, or a single TBS, delivered when PKA is activated, results in LTP that is associated with a transient increase in γ (LTPγ), caused by the insertion of calcium-permeable (CP)-AMPA receptors. Activation of CaMKII is necessary and sufficient for LTPN whilst PKA is additionally required for LTPγ. Thus, two mechanistically distinct forms of LTP co-exist at these synapses.


2002 ◽  
Vol 88 (1) ◽  
pp. 107-116 ◽  
Author(s):  
David R. Ireland ◽  
Wickliffe C. Abraham

Previous studies have implicated phospholipase C (PLC)-linked Group I metabotropic glutamate receptors (mGluRs) in regulating the excitability of hippocampal CA1 pyramidal neurons. We used intracellular recordings from rat hippocampal slices and specific antagonists to examine in more detail the mGluR receptor subtypes and signal transduction mechanisms underlying this effect. Application of the Group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) suppressed slow- and medium-duration afterhyperpolarizations (s- and mAHP) and caused a consequent increase in cell excitability as well as a depolarization of the membrane and an increase in input resistance. Interestingly, with the exception of the suppression of the mAHP, these effects were persistent, and in the case of the sAHP lasting for more than 1 h of drug washout. Preincubation with the specific mGluR5 antagonist, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), reduced but did not completely prevent the effects of DHPG. However, preincubation with both MPEP and the mGluR1 antagonist LY367385 completely prevented the DHPG-induced changes. These results demonstrate that the DHPG-induced changes are mediated partly by mGluR5 and partly by mGluR1. Because Group I mGluRs are linked to PLC via G-protein activation, we also investigated pathways downstream of PLC activation, using chelerythrine and cyclopiazonic acid to block protein kinase C (PKC) and inositol 1,4,5-trisphosphate-(IP3)-activated Ca2+ stores, respectively. Neither inhibitor affected the DHPG-induced suppression of the sAHP or the increase in excitability nor did an inhibitor of PLC itself, U-73122. Taken together, these results argue that in CA1 pyramidal cells in the adult rat, DHPG activates mGluRs of both the mGluR5 and mGluR1 subtypes, causing a long-lasting suppression of the sAHP and a consequent persistent increase in excitability via a PLC-, PKC-, and IP3-independent transduction pathway.


2014 ◽  
Vol 112 (2) ◽  
pp. 263-275 ◽  
Author(s):  
Hayley A. Mattison ◽  
Ashish A. Bagal ◽  
Michael Mohammadi ◽  
Nisha S. Pulimood ◽  
Christian G. Reich ◽  
...  

GluA2-lacking, calcium-permeable α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPARs) have unique properties, but their presence at excitatory synapses in pyramidal cells is controversial. We have tested certain predictions of the model that such receptors are present in CA1 cells and show here that the polyamine spermine, but not philanthotoxin, causes use-dependent inhibition of synaptically evoked excitatory responses in stratum radiatum, but not s. oriens, in cultured and acute hippocampal slices. Stimulation of single dendritic spines by photolytic release of caged glutamate induced an N-methyl-d-aspartate receptor-independent, use- and spermine-sensitive calcium influx only at apical spines in cultured slices. Bath application of glutamate also triggered a spermine-sensitive influx of cobalt into CA1 cell dendrites in s. radiatum. Responses of single apical, but not basal, spines to photostimulation displayed prominent paired-pulse facilitation (PPF) consistent with use-dependent relief of cytoplasmic polyamine block. Responses at apical dendrites were diminished, and PPF was increased, by spermine. Intracellular application of pep2m, which inhibits recycling of GluA2-containing AMPARs, reduced apical spine responses and increased PPF. We conclude that some calcium-permeable, polyamine-sensitive AMPARs, perhaps lacking GluA2 subunits, are present at synapses on apical dendrites of CA1 pyramidal cells, which may allow distinct forms of synaptic plasticity and computation at different sets of excitatory inputs.


2008 ◽  
Vol 8 (6) ◽  
pp. 170-172
Author(s):  
Gregory C. Mathews

Subunit-Specific Trafficking of >GABAA Receptors During Status Epilepticus. Goodkin HP, Joshi S, Mtchedlishvili Z, Brar J, Kapur J. J Neurosci 2008 5;28(10):2527–2538. It is proposed that a reduced surface expression of GABAA receptors (GABARs) contributes to the pathogenesis of status epilepticus (SE), a condition characterized by prolonged seizures. This hypothesis was based on the finding that prolonged epileptiform bursting (repetitive bursts of prolonged depolarizations with superimposed action potentials) in cultures of dissociated hippocampal pyramidal neurons (dissociated cultures) results in the increased intracellular accumulation of GABARs. However, it is not known whether this rapid modification in the surface-expressed GABAR pool results from selective, subunit-dependent or nonselective, subunit-independent internalization of GABARs. In hippocampal slices obtained from animals undergoing prolonged SE (SE-treated slices), we found that the surface expression of the GABAR β2/3 and γ2 subunits was reduced, whereas that of the δ subunit was not. Complementary electrophysiological recordings from dentate granule cells in SE-treated slices demonstrated a reduction in GABAR-mediated synaptic inhibition, but not tonic inhibition. A reduction in the surface expression of the γ2 subunit, but not the δ subunit was also observed in dissociated cultures and organotypic hippocampal slice cultures when incubated in an elevated KCl external medium or an elevated KCl external medium supplemented with NMDA, respectively. Additional studies demonstrated that the reduction in the surface expression of the γ2 subunit was independent of direct ligand binding of the GABAR. These findings demonstrate that the regulation of surface-expressed GABAR pool during SE is subunit-specific and occurs independent of ligand binding. The differential modulation of the surface expression of GABARs during SE has potential implications for the treatment of this neurological emergency.


2020 ◽  
Author(s):  
Jithin D. Nair ◽  
Ellen Braksator ◽  
Busra P Yucel ◽  
Richard Seager ◽  
Jack R. Mellor ◽  
...  

AbstractHere we report that sustained activation of GluK2 subunit-containing kainate receptors leads to AMPA receptor endocytosis and a novel form of long-term depression (KAR-LTDAMPAR) in hippocampal neurons. The KAR-evoked loss of surface AMPA receptors requires KAR channel activity and is occluded by the blockade of PKC or PKA. Moreover, in acute hippocampal slices, kainate invoked LTD of AMPA EPSCs. These data, together with our previously reported KAR-LTPAMPAR, demonstrate that KARs bidirectionally regulate synaptic AMPARs and synaptic plasticity.


2020 ◽  
Author(s):  
Pojeong Park ◽  
John Georgiou ◽  
Thomas M. Sanderson ◽  
Kwang-Hee Ko ◽  
Heather Kang ◽  
...  

ABSTRACTLong-term potentiation (LTP) at hippocampal CA1 synapses can be expressed by an increase either in the number (N) of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors or in their single channel conductance (γ). Here we have established how these distinct synaptic processes contribute to the expression of LTP in hippocampal slices obtained from young adult rodents. LTP induced by compressed theta burst stimulation (TBS), with a 10 s inter-episode interval, involved purely an increase in N (LTPN). In contrast, either a spaced TBS, with a 10 min inter-episode interval, or a single TBS, delivered when PKA was activated, resulted in LTP that was associated with a transient increase in γ (LTPγ). This γ increase was due to the insertion of calcium-permeable (CP)-AMPA receptors. Activation of CaMKII was necessary and sufficient for LTPN whilst PKA was additionally required for LTPγ. Thus, two mechanistically distinct forms of LTP co-exist at these synapses.


2019 ◽  
Author(s):  
Mascia Amici ◽  
Yeseul Lee ◽  
Robert J.P. Pope ◽  
Graham L. Collingridge

ABSTRACTUnderstanding the normal functions of GSK-3β in the central nervous system is of major interest because deregulation of this kinase is strongly implicated in a variety of serious brain conditions, such as Alzheimer disease, bipolar disorder and schizophrenia. GSK-3β plays a role in the induction of NMDA receptor-dependent long-term depression (LTD) and several substrates for GSK-3β have been identified in this form of synaptic plasticity, including KLC-2, PSD-95 and tau. Stabilization of NMDA receptors at synapses has also been shown to involve GSK-3β, but the substrates involved are currently unknown. Recent work has identified phosphatidylinositol 4 kinase type IIα (PI4KIIα) as a neuronal GSK-3β substrate that can potentially regulate the surface expression of AMPA receptors. In the present study, we investigated the synaptic role of PI4KIIα in organotypic rat hippocampal slices. We found that knockdown of PI4KIIα had no effect on synaptic AMPA receptors but substantially inhibited synaptic NMDA receptors. Furthermore, the ability of the selective GSK-3 inhibitor, CT99021, to inhibit synaptic NMDA receptors was occluded in shRNA-PI4KIIα transfected neurons. The effects of knocking down PI4KIIα knockdown were fully rescued by a shRNA-resistant wild type construct but could not be rescued by a mutant construct that was unable to be phosphorylated by GSK-3β. The data suggest that GSK-3β phosphorylates PI4KIIα to stabilize the expression of synaptic NMDA receptors.


2006 ◽  
Vol 95 (4) ◽  
pp. 2590-2601 ◽  
Author(s):  
Hong-Shuo Sun ◽  
Zhong-Ping Feng ◽  
Takashi Miki ◽  
Susumu Seino ◽  
Robert J. French

Adenosine triphosphate (ATP)–sensitive potassium (KATP) channels, incorporating Kir6.x and sulfonylurea receptor subunits, are weak inward rectifiers that are thought to play a role in neuronal protection from ischemic insults. However, the involvement of Kir6.2-containing KATP channel in hippocampus and neocortex has not been tested directly. To delineate the physiological roles of Kir6.2 channels in the CNS, we used knockout (KO) mice that do not express Kir6.2. Immunocytochemical staining demonstrated that Kir6.2 protein was expressed robustly in hippocampal neurons of the wild-type (WT) mice and absent in the KO. To examine neuronal sensitivity to metabolic stress in vitro, and to ischemia in vivo, we 1) exposed hippocampal slices to transient oxygen and glucose deprivation (OGD) and 2) produced focal cerebral ischemia by middle cerebral artery occlusion (MCAO). Both slice and whole animal studies showed that neurons from the KO mice were severely damaged after anoxia or ischemia, whereas few injured neurons were observed in the WT, suggesting that Kir6.2 channels are necessary to protect neurons from ischemic insults. Membrane potential recordings from the WT CA1 pyramidal neurons showed a biphasic response to OGD; a brief hyperpolarization was followed by a small depolarization during OGD, with complete recovery within 30 min after returning to normoxic conditions. By contrast, CA1 pyramidal neurons from the KO mice were irreversibly depolarized by OGD exposure, without any preceding hyperpolarization. These data suggest that expression of Kir6.2 channels prevents prolonged depolarization of neurons resulting from acute hypoxic or ischemic insults, and thus protects these central neurons from the injury.


1987 ◽  
Vol 65 (5) ◽  
pp. 842-846 ◽  
Author(s):  
Peter W. Kujtan ◽  
Peter L. Carlen

The dose-dependent effects of phencyclidine were examined in guinea pig hippocampal slices using intracellular and extracellular recordings. Orthodromically evoked population potentials from the CA1 cell body layer were enhanced by low doses (0.2–0.4 μM) and depressed by high doses (0.01–10 mM). Medium doses of the drug (2.0–10.0 μM) showed little effect. Intracellular recordings from CA1 pyramidal neurons gave similar dose-dependent results. Low doses increased spontaneous firing rates and caused silent cells to fire. Medium doses both increased and decreased firing rates, whereas high doses depressed firing rates. Large transient depolarizing shifts were seen in some phencyclidine-treated cells at medium and high doses. Phencyclidine effects took 15–30 min to develop and were only partially reversible after a washout of up to 1 h.


Sign in / Sign up

Export Citation Format

Share Document