scholarly journals Ionospheric response to X-class solar flares in the ascending half of the subdued solar cycle 24

2016 ◽  
Vol 125 (6) ◽  
pp. 1235-1244 ◽  
Author(s):  
Rumajyoti Hazarika ◽  
Bitap Raj Kalita ◽  
Pradip Kumar Bhuyan
2019 ◽  
Vol 364 (12) ◽  
Author(s):  
S. S. Rao ◽  
Monti Chakraborty ◽  
Sanjay Kumar ◽  
A. K. Singh

2018 ◽  
Vol 61 (2) ◽  
pp. 777-785 ◽  
Author(s):  
Bimal Pande ◽  
Seema Pande ◽  
Ramesh Chandra ◽  
Mahesh Chandra Mathpal

2015 ◽  
Vol 11 (S320) ◽  
pp. 330-332
Author(s):  
Ahmed A. Hady ◽  
Marwa H. Mostafa ◽  
Susan W. Samwel

AbstractDuring the declining phase of the Solar cycle 24, a new peak appeared on January 7, 2014. The release of x-class flares, with the high energetic particles, were found to be more intense than that occurred during the main peak of the same cycle. Few X-class flares were released, lately, during the year 2014. We note that during the last 5 solar cycles, a new peak has appeared, releasing high energetic particles and X-class solar flares, which are called the secondary peak or the double peak of solar cycle. The aim of this descriptive study is to follow the morphological and magnetic changes of the active region before, during, and after the production of X-class flares according to data analysis. Furthermore, the causes of the release of such eruptive storms have been discussed for the period, year 2014, during the double peak of the solar cycle 24.


Science ◽  
2020 ◽  
Vol 369 (6503) ◽  
pp. 587-591 ◽  
Author(s):  
Kanya Kusano ◽  
Tomoya Iju ◽  
Yumi Bamba ◽  
Satoshi Inoue

Solar flares are highly energetic events in the Sun’s corona that affect Earth’s space weather. The mechanism that drives the onset of solar flares is unknown, hampering efforts to forecast them, which mostly rely on empirical methods. We present the κ-scheme, a physics-based model to predict large solar flares through a critical condition of magnetohydrodynamic instability, triggered by magnetic reconnection. Analysis of the largest (X-class) flares from 2008 to 2019 (during solar cycle 24) shows that the κ-scheme predicts most imminent large solar flares, with a small number of exceptions for confined flares. We conclude that magnetic twist flux density, close to a magnetic polarity inversion line on the solar surface, determines when and where solar flares may occur and how large they can be.


2021 ◽  
Author(s):  
Alexander Kosovichev ◽  
Ivan Sharykin

<p>Helioseismic response to solar flares ("sunquakes") occurs due to localized force or/and momentum impacts observed during the flare impulsive phase in the lower atmosphere. Such impacts may be caused by precipitation of high-energy particles, downward shocks, or magnetic Lorentz force. Understanding the mechanism of sunquakes is a key problem of the flare energy release and transport. Our statistical analysis of M-X class flares observed by the Solar Dynamics Observatory during Solar Cycle 24 has shown that contrary to expectations, many relatively weak M-class flares produced strong sunquakes, while for some powerful X-class flares, helioseismic waves were not observed or were weak. The analysis also revealed that there were active regions characterized by the most efficient generation of sunquakes during the solar cycle. We found that the sunquake power correlates with maximal values of the X-ray flux derivative better than with the X-ray class. The sunquake data challenge the current theories of solar flares.</p>


2017 ◽  
Vol 122 (1) ◽  
pp. 1064-1082 ◽  
Author(s):  
John Bosco Habarulema ◽  
Zama Thobeka Katamzi ◽  
Patrick Sibanda ◽  
Tshimangadzo Merline Matamba

2019 ◽  
Vol 5 (2) ◽  
pp. 76-80
Author(s):  
Владимир Смирнов ◽  
Vladimir Smirnov ◽  
Елена Смирнова ◽  
Elena Smirnova

Using data from the GPS and GLONASS navigation satellite systems, we analyze the responses of the mid-latitude ionosphere to the extreme solar flares that occurred at the maximum of solar cycle 23 (October 28, 2003) and at the minimum of solar cycle 24 (September 6, 2017) during the same season at close solar zenith angles. To obtain the response, we use the rate of change of the total electronic content, which is practically independent of characteristics of equipment and is determined only by parameters of a propagation medium (the ionosphere in our case). The ionospheric response is shown to be almost independent of the total duration of the flare. In both cases, the duration of the main response at a level of 0.5 is about 1.5–2 min, whereas the total duration of the response is about 10 min and fairly independent of solar flare importance.


Sign in / Sign up

Export Citation Format

Share Document