Future changes in rice yield over Kerala using climate change scenario from high resolution global climate model projection

2020 ◽  
Vol 129 (1) ◽  
Author(s):  
Stella Jes Varghese ◽  
Sajani Surendran ◽  
B Ajithkumar ◽  
Kavirajan Rajendran ◽  
Akio Kitoh
2020 ◽  
Author(s):  
Claas Teichmann ◽  
Daniela Jacob ◽  
Armelle Reca Remedio ◽  
Thomas Remke ◽  
Lars Buntemeyer ◽  
...  

<p>The Coordinated Output for Regional Evaluations (CORE) simulation ensemble is an effort of the WCRP CORDEX community to provide high resolution regional climate change information for the major inhabited areas of the world and thus to generate the solid scientific basis for further research related to vulnerability, impact, adaptation and climate services (VIACS). This is especially important in those areas in which so far only few high-resolution simulations or only global comparatively coarse simulations were available. The driving simulations were selected to cover the spread of high, medium and low climate sensitivity at a global scale. Initially, the two RCMs REMO and RegCM4 were used to downscale these data global climate model output to a resolution of 0.22° (about 25km) while it is intended that the CORDEX CORE ensemble can then be extended by additional regional simulations to further increase the ensemble size and thus the representation of possible future climate change pathways.</p> <p>The aim of this study is to investigate and document the climate change information provided by the current CORDEX CORE ensemble with respect to mean climate change in different regions and in comparison to previously existing global climate information, especially those global climate simulations used as boundary forcing for CORDEX CORE, but also in comparison to the entire AR5-GCM ensemble. The analysis focuses on the representation of the AR5-GCM range of climate change signals by the CORDEX CORE ensemble with respect to mean temperature and precipitation changes and corresponding shifts in the annual cycles in the new AR6 IPCC physical reference regions. This also provides an indication for CORDEX CORE suitability for VIACS applications in each region.</p>


2021 ◽  
Author(s):  
Samir Patel ◽  
Megan Winton ◽  
Joshua Hatch ◽  
Heather Haas ◽  
Vincent Saba ◽  
...  

Abstract It is well established that sea turtles are vulnerable to atmospheric and oceanographic shifts associated with climate change. However, few studies have formally projected how their seasonal marine habitat may shift in response to warming ocean temperatures. Here we used a high-resolution global climate model and a large satellite tagging dataset to project changes in the future distribution of suitable thermal habitat for loggerheads along the northeastern continental shelf of the United States. Between 2009 and 2018, we deployed 196 satellite tags on loggerheads within the Middle Atlantic Bight (MAB) of the Northwest Atlantic continental shelf region, a seasonal foraging area. Tag location data combined with depth and remotely sensed sea surface temperature (SST) were used to characterize the species’ current thermal range in the MAB. The best-fitting model indicated that the habitat envelope for tagged loggerheads consisted of SST ranging from 11.0° - 29.7° C and depths between 0 – 105.0 m. The calculated core habitat consisted of temperatures between 15.0° – 28.0° C and at depths between 8.0 – 92.0 m and the highest probability of presence occurred in regions with SST between 17.7° – 25.3° C and at depths between 26.1 – 74.2 m. The habitat suitability model was then forced by a high-resolution global climate model under a doubling of atmospheric CO2 to project loggerhead probability of presence over the next 80 years. Our results suggest that loggerhead thermal habitat and seasonal duration will likely increase in northern regions of the NW Atlantic shelf. This change in spatiotemporal range for sea turtles in a region of high anthropogenic use may prompt adjustments to the localized protected species conservation measures.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samir H. Patel ◽  
Megan V. Winton ◽  
Joshua M. Hatch ◽  
Heather L. Haas ◽  
Vincent S. Saba ◽  
...  

AbstractIt is well established that sea turtles are vulnerable to atmospheric and oceanographic shifts associated with climate change. However, few studies have formally projected how their seasonal marine habitat may shift in response to warming ocean temperatures. Here we used a high-resolution global climate model and a large satellite tagging dataset to project changes in the future distribution of suitable thermal habitat for loggerheads along the northeastern continental shelf of the United States. Between 2009 and 2018, we deployed 196 satellite tags on loggerheads within the Middle Atlantic Bight (MAB) of the Northwest Atlantic continental shelf region, a seasonal foraging area. Tag location data combined with depth and remotely sensed sea surface temperature (SST) were used to characterize the species’ current thermal range in the MAB. The best-fitting model indicated that the habitat envelope for tagged loggerheads consisted of SST ranging from 11.0° to 29.7 °C and depths between 0 and 105.0 m. The calculated core bathythermal range consisted of SSTs between 15.0° and 28.0 °C and depths between 8.0 and 92.0 m, with the highest probability of presence occurred in regions with SST between 17.7° and 25.3 °C and at depths between 26.1 and 74.2 m. This model was then forced by a high-resolution global climate model under a doubling of atmospheric CO2 to project loggerhead probability of presence over the next 80 years. Our results suggest that loggerhead thermal habitat and seasonal duration will likely increase in northern regions of the NW Atlantic shelf. This change in spatiotemporal range for sea turtles in a region of high anthropogenic use may prompt adjustments to the localized protected species conservation measures.


2014 ◽  
Vol 15 (4) ◽  
pp. 1517-1531 ◽  
Author(s):  
Gerhard Smiatek ◽  
Harald Kunstmann ◽  
Andreas Heckl

Abstract The impact of climate change on the future water availability of the upper Jordan River (UJR) and its tributaries Dan, Snir, and Hermon located in the eastern Mediterranean is evaluated by a highly resolved distributed approach with the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) run at 18.6- and 6.2-km resolution offline coupled with the Water Flow and Balance Simulation Model (WaSiM). The MM5 was driven with NCEP reanalysis for 1971–2000 and with Hadley Centre Coupled Model, version 3 (HadCM3), GCM forcings for 1971–2099. Because only one regional–global climate model combination was applied, the results may not give the full range of possible future projections. To describe the Dan spring behavior, the hydrological model was extended by a bypass approach to allow the fast discharge components of the Snir to enter the Dan catchment. Simulation results for the period 1976–2000 reveal that the coupled system was able to reproduce the observed discharge rates in the partially karstic complex terrain to a reasonable extent with the high-resolution 6.2-km meteorological input only. The performed future climate simulations show steadily rising temperatures with 2.2 K above the 1976–2000 mean for the period 2031–60 and 3.5 K for the period 2070–99. Precipitation trends are insignificant until the middle of the century, although a decrease of approximately 12% is simulated. For the end of the century, a reduction in rainfall ranging between 10% and 35% can be expected. Discharge in the UJR is simulated to decrease by 12% until 2060 and by 26% until 2099, both related to the 1976–2000 mean. The discharge decrease is associated with a lower number of high river flow years.


2017 ◽  
Vol 10 (3) ◽  
pp. 1383-1402 ◽  
Author(s):  
Paolo Davini ◽  
Jost von Hardenberg ◽  
Susanna Corti ◽  
Hannah M. Christensen ◽  
Stephan Juricke ◽  
...  

Abstract. The Climate SPHINX (Stochastic Physics HIgh resolutioN eXperiments) project is a comprehensive set of ensemble simulations aimed at evaluating the sensitivity of present and future climate to model resolution and stochastic parameterisation. The EC-Earth Earth system model is used to explore the impact of stochastic physics in a large ensemble of 30-year climate integrations at five different atmospheric horizontal resolutions (from 125 up to 16 km). The project includes more than 120 simulations in both a historical scenario (1979–2008) and a climate change projection (2039–2068), together with coupled transient runs (1850–2100). A total of 20.4 million core hours have been used, made available from a single year grant from PRACE (the Partnership for Advanced Computing in Europe), and close to 1.5 PB of output data have been produced on SuperMUC IBM Petascale System at the Leibniz Supercomputing Centre (LRZ) in Garching, Germany. About 140 TB of post-processed data are stored on the CINECA supercomputing centre archives and are freely accessible to the community thanks to an EUDAT data pilot project. This paper presents the technical and scientific set-up of the experiments, including the details on the forcing used for the simulations performed, defining the SPHINX v1.0 protocol. In addition, an overview of preliminary results is given. An improvement in the simulation of Euro-Atlantic atmospheric blocking following resolution increase is observed. It is also shown that including stochastic parameterisation in the low-resolution runs helps to improve some aspects of the tropical climate – specifically the Madden–Julian Oscillation and the tropical rainfall variability. These findings show the importance of representing the impact of small-scale processes on the large-scale climate variability either explicitly (with high-resolution simulations) or stochastically (in low-resolution simulations).


2016 ◽  
Vol 155 (3) ◽  
pp. 407-420 ◽  
Author(s):  
R. S. SILVA ◽  
L. KUMAR ◽  
F. SHABANI ◽  
M. C. PICANÇO

SUMMARYTomato (Solanum lycopersicum L.) is one of the most important vegetable crops globally and an important agricultural sector for generating employment. Open field cultivation of tomatoes exposes the crop to climatic conditions, whereas greenhouse production is protected. Hence, global warming will have a greater impact on open field cultivation of tomatoes rather than the controlled greenhouse environment. Although the scale of potential impacts is uncertain, there are techniques that can be implemented to predict these impacts. Global climate models (GCMs) are useful tools for the analysis of possible impacts on a species. The current study aims to determine the impacts of climate change and the major factors of abiotic stress that limit the open field cultivation of tomatoes in both the present and future, based on predicted global climate change using CLIMatic indEX and the A2 emissions scenario, together with the GCM Commonwealth Scientific and Industrial Research Organisation (CSIRO)-Mk3·0 (CS), for the years 2050 and 2100. The results indicate that large areas that currently have an optimum climate will become climatically marginal or unsuitable for open field cultivation of tomatoes due to progressively increasing heat and dry stress in the future. Conversely, large areas now marginal and unsuitable for open field cultivation of tomatoes will become suitable or optimal due to a decrease in cold stress. The current model may be useful for plant geneticists and horticulturalists who could develop new regional stress-resilient tomato cultivars based on needs related to these modelling projections.


2018 ◽  
Vol 18 (11) ◽  
pp. 2991-3006 ◽  
Author(s):  
Matthew D. K. Priestley ◽  
Helen F. Dacre ◽  
Len C. Shaffrey ◽  
Kevin I. Hodges ◽  
Joaquim G. Pinto

Abstract. Extratropical cyclones are the most damaging natural hazard to affect western Europe. Serial clustering occurs when many intense cyclones affect one specific geographic region in a short period of time which can potentially lead to very large seasonal losses. Previous studies have shown that intense cyclones may be more likely to cluster than less intense cyclones. We revisit this topic using a high-resolution climate model with the aim to determine how important clustering is for windstorm-related losses. The role of windstorm clustering is investigated using a quantifiable metric (storm severity index, SSI) that is based on near-surface meteorological variables (10 m wind speed) and is a good proxy for losses. The SSI is used to convert a wind footprint into losses for individual windstorms or seasons. 918 years of a present-day ensemble of coupled climate model simulations from the High-Resolution Global Environment Model (HiGEM) are compared to ERA-Interim reanalysis. HiGEM is able to successfully reproduce the wintertime North Atlantic/European circulation, and represent the large-scale circulation associated with the serial clustering of European windstorms. We use two measures to identify any changes in the contribution of clustering to the seasonal windstorm loss as a function of return period. Above a return period of 3 years, the accumulated seasonal loss from HiGEM is up to 20 % larger than the accumulated seasonal loss from a set of random resamples of the HiGEM data. Seasonal losses are increased by 10 %–20 % relative to randomized seasonal losses at a return period of 200 years. The contribution of the single largest event in a season to the accumulated seasonal loss does not change with return period, generally ranging between 25 % and 50 %. Given the realistic dynamical representation of cyclone clustering in HiGEM, and comparable statistics to ERA-Interim, we conclude that our estimation of clustering and its dependence on the return period will be useful for informing the development of risk models for European windstorms, particularly for longer return periods.


Sign in / Sign up

Export Citation Format

Share Document