probability of presence
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 13)

H-INDEX

8
(FIVE YEARS 2)

Diachronica ◽  
2021 ◽  
Author(s):  
Gerd Carling ◽  
Chundra Cathcart

Abstract This paper employs phylogenetic modeling to reconstruct the alignment system of Indo-European. We use a data set of categorical morphosyntactic features, which take states such as ‘nominative-accusative’, ‘active-stative’, or ‘ergative’. We analyze these characters with a standard Bayesian comparative phylogenetic method, inferring transition rates between character states on the basis of a phylogenetic representation of the languages in the data. Using these rates, we then reconstruct the probability of presence of traits at the root and nodes of Indo-European. We find that the most probable alignment system for Proto-Indo-European is a nominative-accusative system, with low probabilities of neutral marking and ergativity in the categories lower in grammatical hierarchies (nouns, past). Using a test of phylogenetic signal, we find that characters pertaining to categories higher in hierarchies show greater phylogenetic stability than categories lower in hierarchies. We examine our results in relation to theories of Proto-Indo-European alignment as well as to general typology.


2021 ◽  
Author(s):  
Marion Germain ◽  
Daniel Kneeshaw ◽  
Louis De Grandpré ◽  
Mélanie Desrochers ◽  
Patrick M. A. James ◽  
...  

Abstract Context Although the spatiotemporal dynamics of spruce budworm outbreaks have been intensively studied, forecasting outbreaks remains challenging. During outbreaks, budworm-linked warblers (Tennessee, Cape May, and bay-breasted warbler) show a strong positive response to increases in spruce budworm, but little is known about the relative timing of these responses. Objectives We hypothesized that these warblers could be used as sentinels of future defoliation of budworm host trees. We examined the timing and magnitude of the relationships between defoliation by spruce budworm and changes in the probability of presence of warblers to determine whether they responded to budworm infestation before local defoliation being observed by standard detection methods. Methods We modelled this relationship using large-scale point count surveys of songbirds and maps of cumulative time-lagged defoliation over multiple spatial scales (2–30 km radius around sampling points) in Quebec, Canada. Results All three warbler species responded positively to defoliation at each spatial scale considered, but the timing of their response differed. Maximum probability of presence of Tennessee and Cape May warbler coincided with observations of local defoliation, or provided a one year warning, making them of little use to guide early interventions. In contrast, the probability of presence of bay-breasted warbler consistently increased 3–4 years before defoliation was detectable. Conclusions Early detection is a critical step in the management of spruce budworm outbreaks and rapid increases in the probability of presence of bay-breasted warbler could be used to identify future epicenters and target ground-based local sampling of spruce budworm.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samir H. Patel ◽  
Megan V. Winton ◽  
Joshua M. Hatch ◽  
Heather L. Haas ◽  
Vincent S. Saba ◽  
...  

AbstractIt is well established that sea turtles are vulnerable to atmospheric and oceanographic shifts associated with climate change. However, few studies have formally projected how their seasonal marine habitat may shift in response to warming ocean temperatures. Here we used a high-resolution global climate model and a large satellite tagging dataset to project changes in the future distribution of suitable thermal habitat for loggerheads along the northeastern continental shelf of the United States. Between 2009 and 2018, we deployed 196 satellite tags on loggerheads within the Middle Atlantic Bight (MAB) of the Northwest Atlantic continental shelf region, a seasonal foraging area. Tag location data combined with depth and remotely sensed sea surface temperature (SST) were used to characterize the species’ current thermal range in the MAB. The best-fitting model indicated that the habitat envelope for tagged loggerheads consisted of SST ranging from 11.0° to 29.7 °C and depths between 0 and 105.0 m. The calculated core bathythermal range consisted of SSTs between 15.0° and 28.0 °C and depths between 8.0 and 92.0 m, with the highest probability of presence occurred in regions with SST between 17.7° and 25.3 °C and at depths between 26.1 and 74.2 m. This model was then forced by a high-resolution global climate model under a doubling of atmospheric CO2 to project loggerhead probability of presence over the next 80 years. Our results suggest that loggerhead thermal habitat and seasonal duration will likely increase in northern regions of the NW Atlantic shelf. This change in spatiotemporal range for sea turtles in a region of high anthropogenic use may prompt adjustments to the localized protected species conservation measures.


2021 ◽  
Vol 61 ◽  
pp. e20216118
Author(s):  
Ronildo Alves Benício ◽  
Daniel Cunha Passos ◽  
Abraham Mencía ◽  
Zaida Ortega

Understanding how different environmental factors influence species occurrence is a key issue to address the study of natural populations. However, there is a lack of knowledge on how local traits influence the microhabitat use of tropical arboreal lizards. Here, we investigated the microhabitat selection of the poorly known lizard Tropidurus lagunablanca (Squamata: Tropiduridae) and evaluated how environmental microhabitat features influence animal’s presence. We used a Resource Selection Function approach, in a case/control design where we analyzed the effect of substrate temperature and tree’s diameter at breast height (DBH) in the probability of presence of lizards using mixed Conditional Logistic Regression. We found that T. lagunablanca uses trees with DBH from 0.40 m to 4 m and substrate temperatures ranging from 25.9℃ to 42℃. Moreover, we showed that thickness of the trees and substrate temperatures significantly increased the probability of presence of T. lagunablanca individuals, being the probability of presence higher than 50% for trees up to 1.5 m DBH and temperature of substrate up to 37.5℃. Our study probed that T. lagunablanca individuals choose trees non-randomly, selecting thicker and warmer tree trunks. This information advances the knowledge of the spatial ecology of Neotropical arboreal lizards and is relevant for conservation, putting an emphasis on preserving native vegetation in the Pantanal.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jessica A. Keller ◽  
Danielle Morley ◽  
Jennifer L. Herbig ◽  
Paul Barbera ◽  
Michael W. Feeley ◽  
...  

Abstract Background With the increase in telemetry studies over the past decade, improving understanding of how different tagging methods influence the probability of presence in a receiver array is important in maximizing the resulting data. Disappearance from the array may be due to mortality from surgery complications, tag loss, predation, or emigration. Internally tagging fish on a boat can cause barotrauma injuries, increased stress from prolonged handling times, or predation after fish have been released back into the water. Conducting in situ internal acoustic tagging at depth of capture removes barotrauma stresses and simplifies the release method, which may improve fish survival and decrease risk of disappearance from the array. In this study, we used 8 years of acoustic tagging data to determine if the tagging method (in situ versus on the boat) influenced the likelihood of a fish being detected 4 and 6 days after the tagging event. Results At 6 days after tagging, Kaplan–Meier survival curves revealed that the probability of presence for fish tagged on the boat was 66% compared to 90% for fish tagged in situ. Tagging method was the only variable to significantly affect probability of presence based on Cox proportional hazards models, with fish tagged in situ ~ 75% less likely to disappear from the array compared to fish tagged on the boat at both 4 and 6 days after tagging. Examining tagging methods separately, handling time only marginally influenced probability of presence of boat-tagged fish and no variables had a significant effect on probability of presence of in situ tagged fish. Conclusions In this study, tagging method was the only variable to significantly affect the probability of presence for internally tagged fish. Other factors had little to no influence, but correlation of variables limited what factors could be included in the models. Implanting internal acoustic tags in situ is not a practical method for every species and for every environment, but given the increased probability of presence demonstrated here, we strongly suggest it be considered where applicable.


2021 ◽  
Author(s):  
Samir Patel ◽  
Megan Winton ◽  
Joshua Hatch ◽  
Heather Haas ◽  
Vincent Saba ◽  
...  

Abstract It is well established that sea turtles are vulnerable to atmospheric and oceanographic shifts associated with climate change. However, few studies have formally projected how their seasonal marine habitat may shift in response to warming ocean temperatures. Here we used a high-resolution global climate model and a large satellite tagging dataset to project changes in the future distribution of suitable thermal habitat for loggerheads along the northeastern continental shelf of the United States. Between 2009 and 2018, we deployed 196 satellite tags on loggerheads within the Middle Atlantic Bight (MAB) of the Northwest Atlantic continental shelf region, a seasonal foraging area. Tag location data combined with depth and remotely sensed sea surface temperature (SST) were used to characterize the species’ current thermal range in the MAB. The best-fitting model indicated that the habitat envelope for tagged loggerheads consisted of SST ranging from 11.0° - 29.7° C and depths between 0 – 105.0 m. The calculated core habitat consisted of temperatures between 15.0° – 28.0° C and at depths between 8.0 – 92.0 m and the highest probability of presence occurred in regions with SST between 17.7° – 25.3° C and at depths between 26.1 – 74.2 m. The habitat suitability model was then forced by a high-resolution global climate model under a doubling of atmospheric CO2 to project loggerhead probability of presence over the next 80 years. Our results suggest that loggerhead thermal habitat and seasonal duration will likely increase in northern regions of the NW Atlantic shelf. This change in spatiotemporal range for sea turtles in a region of high anthropogenic use may prompt adjustments to the localized protected species conservation measures.


2020 ◽  
pp. 60-72
Author(s):  
A. A Pan’kov

Mathematical model of unidirectional fibrous polymer composite material with optical fiber sensor built into reinforcing fiber (filament of elementary fibers) with distributed Bragg grating is developed in order to diagnoste defects of filament impregnation - finding probability of impregnation defect as relative length of local sections of filament without impregnation, i.e. without filling binder of space between its elementary fibers. The technique of digital processing of reflection spectrum according to the solution of the integral Fredholm equation of the 1st kind is used in order to find the desired informative function of density of distribution of axial strains along the length of the sensitive section of the fibre-optic sensor. The approach assumes that the optical fiber sensor is embedded in the composite material at the stage of its manufacture, wherein the low-reflective nature of the sensitive portion of the optical fiber allows linear summation of reflection coefficients from its various local portions regardless of their mutual positions. Algorithm of numerical processing of strain distribution density function is developed for finding of sought probability of presence of impregnation defects along filament length. It has been revealed that the distribution density function has pronounced informative pulses, from the location and value of which the sought-after values of probability of presence of impregnation defects along the length of the filament can be found. The results of diagnostics of different values of the sought probability of the filament impregnation defect are presented based on the results of numerical simulation of the measured reflection spectra and the sought function of strain distribution density along the length of the sensitive section of the optical fiber sensor at different values of the volume fraction of the filaments, combinations of transverse and longitudinal loads of the representative domain of the unidirectional fibrous composite material in comparison with graphs for the case without load.


2020 ◽  
Author(s):  
Kevin A Parker ◽  
Han Li ◽  
Matina C Kalcounis-Rueppell

Abstract Low winter temperatures are a major driver of hibernation and migration in temperate North American bats. Hibernation and migration in turn affect bat mortality via white-nose syndrome and collisions with wind turbines. To describe winter bat acoustic activity across a wide temperature gradient and to understand species-specific responses to low temperatures, we recorded nightly acoustic activity of bats at 15 sites across the state of North Carolina, United States, from December through February 2016 – 2018. Bat acoustic activity was recorded at all sites during both winters. Nightly probability of bat acoustic presence regressed positively on ambient temperature. Nightly probability of presence in Lasionycteris noctivagans (silver-haired bat) and Eptesicus fuscus (big brown bat) regressed negatively on wind speed. The mean probability of presence within the same winter condition was highest for L. noctivagans, followed by E. fuscus, Perimyotis subflavus (tricolored bat), and Lasiurus cinereus (hoary bat). Differences in species’ mean body weight and roosting preference explained part of the variation of the species-specific probability of presence. Our results can be used to predict bat acoustic presence for these species across the southeastern United States in winter, and better understand the potential threats to bats such as white-nose syndrome and wind turbine interactions.


2020 ◽  
Vol 49 (5) ◽  
pp. 1252-1261
Author(s):  
Max Post van der Burg ◽  
Jane E Austin ◽  
Mark T Wiltermuth ◽  
Wesley Newton ◽  
Garrett MacDonald

Abstract Declines among species of insect pollinators, especially butterflies, has garnered attention from scientists and managers. Often these declines have spurred governments to declare some species as threatened or endangered. We used existing presence–absence data from surveys for the threatened Dakota skipper Hesperia dacotae (Skinner) to build statistical maps of species presence that could be used to inform future monitoring designs. We developed a hierarchical Bayesian modeling approach to estimate the spatial distribution and temporal trend in Dakota skipper probability of presence. Our model included a spatial random effect and fixed effects for the proportion of two grassland habitat types: those on well-drained soils and those on poorly drained soils; as well as the topographic slope. The results from this model were then used to assess sampling strategies with two different monitoring objectives: locating new Dakota skipper colonies or monitoring the proportion of historically (pre-2000) extant colonies. Our modeling results suggested that the distribution of Dakota skippers followed the distribution of remnant grasslands and that probabilities of presence tended to be higher in topographically diverse grasslands with well-drained soils. Our analysis also showed that the probability of presence declined throughout the northern Great Plains range. Our simulations of the different sampling designs suggested that new detections were expected when sampling where Dakota skippers likely occurred historically, but this may lead to a tradeoff with monitoring existing sites. Prior information about the extant sites may help to ameliorate this tradeoff.


2020 ◽  
Vol 635 ◽  
pp. L14 ◽  
Author(s):  
Pierre Kervella ◽  
Frédéric Arenou ◽  
Jean Schneider

We analyze the orbital parameters of the recently discovered exoplanet candidate Proxima c using a combination of its spectroscopic orbital parameters and Gaia DR2 astrometric proper motion anomaly. We obtain an orbital inclination of i = 152 ± 14 deg, corresponding to a planet mass of mc = 12−5+12 M⊕, comparable to Uranus and Neptune. While the derived orbital parameters are too uncertain to accurately predict the position of the planet for a given epoch, we present a map of its probability of presence relative to its parent star in the coming years.


Sign in / Sign up

Export Citation Format

Share Document