Genomic Analysis of the Principal Members of Antioxidant Enzymes in Simulated Stresses Response and Postharvest Physiological Deterioration in Cassava

Author(s):  
Sang Shang ◽  
Yuqi Tang ◽  
Jing Dai ◽  
Chunlai Wu ◽  
Yan Yan ◽  
...  
2002 ◽  
Vol 69 ◽  
pp. 59-72 ◽  
Author(s):  
Kurt Drickamer ◽  
Andrew J. Fadden

Many biological effects of complex carbohydrates are mediated by lectins that contain discrete carbohydrate-recognition domains. At least seven structurally distinct families of carbohydrate-recognition domains are found in lectins that are involved in intracellular trafficking, cell adhesion, cell–cell signalling, glycoprotein turnover and innate immunity. Genome-wide analysis of potential carbohydrate-binding domains is now possible. Two classes of intracellular lectins involved in glycoprotein trafficking are present in yeast, model invertebrates and vertebrates, and two other classes are present in vertebrates only. At the cell surface, calcium-dependent (C-type) lectins and galectins are found in model invertebrates and vertebrates, but not in yeast; immunoglobulin superfamily (I-type) lectins are only found in vertebrates. The evolutionary appearance of different classes of sugar-binding protein modules parallels a development towards more complex oligosaccharides that provide increased opportunities for specific recognition phenomena. An overall picture of the lectins present in humans can now be proposed. Based on our knowledge of the structures of several of the C-type carbohydrate-recognition domains, it is possible to suggest ligand-binding activity that may be associated with novel C-type lectin-like domains identified in a systematic screen of the human genome. Further analysis of the sequences of proteins containing these domains can be used as a basis for proposing potential biological functions.


2006 ◽  
Vol 76 (5) ◽  
pp. 324-331 ◽  
Author(s):  
Marsh ◽  
Laursen ◽  
Coombes

Erythrocytes transport oxygen to tissues and exercise-induced oxidative stress increases erythrocyte damage and turnover. Increased use of antioxidant supplements may alter protective erythrocyte antioxidant mechanisms during training. Aim of study: To examine the effects of antioxidant supplementation (α-lipoic acid and α-tocopherol) and/or endurance training on the antioxidant defenses of erythrocytes. Methods: Young male Wistar rats were assigned to (1) sedentary; (2) sedentary and antioxidant-supplemented; (3) endurance-trained; or (4) endurance-trained and antioxidant-supplemented groups for 14 weeks. Erythrocyte superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) activities, and plasma malondialdehyde (MDA) were then measured. Results: Antioxidant supplementation had no significant effect (p > 0.05) on activities of antioxidant enzymes in sedentary animals. Similarly, endurance training alone also had no effect (p > 0.05). GPX (125.9 ± 2.8 vs. 121.5 ± 3.0 U.gHb–1, p < 0.05) and CAT (6.1 ± 0.2 vs. 5.6 ± 0.2 U.mgHb–1, p < 0.05) activities were increased in supplemented trained animals compared to non-supplemented sedentary animals whereas SOD (61.8 ± 4.3 vs. 52.0 ± 5.2 U.mgHb–1, p < 0.05) activity was decreased. Plasma MDA was not different among groups (p > 0.05). Conclusions: In a rat model, the combination of exercise training and antioxidant supplementation increased antioxidant enzyme activities (GPX, CAT) compared with each individual intervention.


2010 ◽  
Vol 80 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Pei-Min Chao ◽  
Wan-Hsuan Chen ◽  
Chun-Huei Liao ◽  
Huey-Mei Shaw

Conjugated linoleic acid (CLA) is a collective term for the positional and geometric isomers of a conjugated diene of linoleic acid (C18:2, n-6). The aims of the present study were to evaluate whether levels of hepatic α-tocopherol, α-tocopherol transfer protein (α-TTP), and antioxidant enzymes in mice were affected by a CLA-supplemented diet. C57BL/6 J mice were divided into the CLA and control groups, which were fed, respectively, a 5 % fat diet with or without 1 g/100 g of CLA (1:1 mixture of cis-9, trans-11 and trans-10, cis-12) for four weeks. α-Tocopherol levels in plasma and liver were significantly higher in the CLA group than in the control group. Liver α-TTP levels were also significantly increased in the CLA group, the α-TTP/β-actin ratio being 2.5-fold higher than that in control mice (p<0.01). Thiobarbituric acid-reactive substances were significantly decreased in the CLA group (p<0.01). There were no significant differences between the two groups in levels of three antioxidant enzymes (superoxide dismutase, glutathione peroxidase, and catalase). The accumulation of liver α-tocopherol seen with the CLA diet can be attributed to the antioxidant potential of CLA and the ability of α-TTP induction. The lack of changes in antioxidant enzyme protein levels and the reduced lipid peroxidation in the liver of CLA mice are due to α-tocopherol accumulation.


2013 ◽  
Author(s):  
Symeon Tournis ◽  
Ioannis Stathopoulos ◽  
Kalliopi Lampropoulou-Adamidou ◽  
Theodora Koromila ◽  
Nikolaos Chatzistamatas ◽  
...  

Author(s):  
Irina F. Labunets ◽  
Sergiy O. Talanov ◽  
R. H. Vasiliev ◽  
A. Ye. Rodnichenko ◽  
N. O. Utko ◽  
...  

Author(s):  
Klaudia V. Nesvitaylova ◽  
Olga A. Gonchar ◽  
Tatyana I. Drevitskaya ◽  
Ludmila P. Arabskaya ◽  
Mikhail M. Steshenko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document