scholarly journals The Role of the Visual System in Emotion Perception

2012 ◽  
Vol 28 (2) ◽  
pp. 179-187 ◽  
Author(s):  
Edoardo Zamuner
Development ◽  
1994 ◽  
Vol 120 (6) ◽  
pp. 1643-1649 ◽  
Author(s):  
K.H. Herzog ◽  
K. Bailey ◽  
Y.A. Barde

Using a sensitive and quantitative method, the mRNA levels of brain-derived neurotrophic factor (BDNF) were determined during the development of the chick visual system. Low copy numbers were detected, and BDNF was found to be expressed in the optic tectum already 2 days before the arrival of the first retinal ganglion cell axons, suggesting an early role of BDNF in tectal development. After the beginning of tectal innervation, BDNF mRNA levels markedly increased, and optic stalk transection at day 4 (which prevents subsequent tectal innervation) was found to reduce the contralateral tectal levels of BDNF mRNA. Comparable reductions were obtained after injection of tetrodotoxin into one eye, indicating that, already during the earliest stages of target encounter in the CNS, the degree of BDNF gene expression is influenced by activity-dependent mechanisms. BDNF mRNA was also detected in the retina itself and at levels comparable to those found in the tectum. Together with previous findings indicating that BDNF prevents the death of cultured chick retinal ganglion cells, these results support the idea that the tightly controlled expression of the BDNF gene might be important in the co-ordinated development of the visual system.


1999 ◽  
Vol 9 (6) ◽  
pp. 445-451
Author(s):  
S. Di Girolamo ◽  
W. Di Nardo ◽  
A. Cosenza ◽  
F. Ottaviani ◽  
A. Dickmann ◽  
...  

The role of vision in postural control is crucial and is strictly related to the characteristics of the visual stimulus and to the performance of the visual system. The purpose of this investigation was to evaluate the effects of chronically reduced visual cues upon postural control in patients affected by Congenital Nystagmus (CN). These patients have developed since birth a postural strategy mainly based on vestibular and somatosensorial cues. Fifteen patients affected by CN and 15 normal controls (NC) were enrolled in the study and evaluated by means of dynamic posturography. The overall postural control in CN patients was impaired as demonstrated by the equilibrium score and by the changes of the postural strategy. This impairment was even more enhanced in CN than in NC group when somatosensorial cues were experimentally reduced. An aspecific pattern of visual impairment and a pathological composite score were also present. Our data outline that in patients affected by CN an impairment of the postural balance is present especially when the postural control relies mainly on visual cues. Moreover, a decrease in accuracy of the somatosensory cues has a proportionally greater effect on balance than it has on normal subjects.


2002 ◽  
Vol 12 (23) ◽  
pp. R818-R826 ◽  
Author(s):  
Frank Sengpiel ◽  
Peter C. Kind
Keyword(s):  

2007 ◽  
pp. 129-160 ◽  
Author(s):  
Pavel Němec ◽  
Pavla Cveková ◽  
Hynek Burda ◽  
Oldřich Benada ◽  
Leo Peichl

Science ◽  
2020 ◽  
Vol 367 (6482) ◽  
pp. 1112-1119 ◽  
Author(s):  
Gerit Arne Linneweber ◽  
Maheva Andriatsilavo ◽  
Suchetana Bias Dutta ◽  
Mercedes Bengochea ◽  
Liz Hellbruegge ◽  
...  

The genome versus experience dichotomy has dominated understanding of behavioral individuality. By contrast, the role of nonheritable noise during brain development in behavioral variation is understudied. Using Drosophila melanogaster, we demonstrate a link between stochastic variation in brain wiring and behavioral individuality. A visual system circuit called the dorsal cluster neurons (DCN) shows nonheritable, interindividual variation in right/left wiring asymmetry and controls object orientation in freely walking flies. We show that DCN wiring asymmetry instructs an individual’s object responses: The greater the asymmetry, the better the individual orients toward a visual object. Silencing DCNs abolishes correlations between anatomy and behavior, whereas inducing DCN asymmetry suffices to improve object responses.


2019 ◽  
Vol 5 (1) ◽  
pp. 427-449 ◽  
Author(s):  
Alison I. Weber ◽  
Kamesh Krishnamurthy ◽  
Adrienne L. Fairhall

Adaptation is a common principle that recurs throughout the nervous system at all stages of processing. This principle manifests in a variety of phenomena, from spike frequency adaptation, to apparent changes in receptive fields with changes in stimulus statistics, to enhanced responses to unexpected stimuli. The ubiquity of adaptation leads naturally to the question: What purpose do these different types of adaptation serve? A diverse set of theories, often highly overlapping, has been proposed to explain the functional role of adaptive phenomena. In this review, we discuss several of these theoretical frameworks, highlighting relationships among them and clarifying distinctions. We summarize observations of the varied manifestations of adaptation, particularly as they relate to these theoretical frameworks, focusing throughout on the visual system and making connections to other sensory systems.


2017 ◽  
Vol 28 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Gábor Kapócs ◽  
Felix Scholkmann ◽  
Vahid Salari ◽  
Noémi Császár ◽  
Henrik Szőke ◽  
...  

AbstractToday, there is an increased interest in research on lysergic acid diethylamide (LSD) because it may offer new opportunities in psychotherapy under controlled settings. The more we know about how a drug works in the brain, the more opportunities there will be to exploit it in medicine. Here, based on our previously published papers and investigations, we suggest that LSD-induced visual hallucinations/phosphenes may be due to the transient enhancement of bioluminescent photons in the early retinotopic visual system in blind as well as healthy people.


Sign in / Sign up

Export Citation Format

Share Document