Screening of Food Samples for Zearalenone Toxin Using an Electrochemical Bioassay Based on DNA–Zearalenone Interaction

2016 ◽  
Vol 9 (9) ◽  
pp. 2463-2470 ◽  
Author(s):  
Neda Roustaee Sadrabadi ◽  
Ali A. Ensafi ◽  
Esmaeil Heydari-Bafrooei ◽  
Mohammad Fazilati
2004 ◽  
Vol 84 (4) ◽  
pp. 651-656 ◽  
Author(s):  
Michele Del Carlo ◽  
Marcello Mascini ◽  
Alessia Pepe ◽  
Gianfranco Diletti ◽  
Dario Compagnone

2018 ◽  
Vol 7 (2) ◽  
pp. 131-136
Author(s):  
Nasir Ahmad

Background: On May 4th, 2016, at 12:30 district surveillance officer of Magelang Health Department received reports from Public Health Center of Bandongan about 21 students of SDN 1 Trasan who suffered from the same food-poisoning symptoms. Objective: Investigation was carried out to identify the source, how it spread and how to control it. Methods: This study used descriptive analytic and mapping the cases distribution location. The case was people experiencing symptoms of dizziness or abdominal pain or nausea or vomiting. Data analysis was done by using bivariate analysis. Data collection were done through interviews, observations and laboratory tests on the food samples. Results: The case was 50 students (from 1-6 grade students). The perceived symptoms were dizziness (77%), nausea (42%), abdominal pain (40%) and vomiting (8%). Attack rate found ranged from 14.3% to 60% with the highest Attack rate found on class three (60%). The incubation period of 15-240 minutes (mean 72.3 minutes). Calamari like positive Bacillus cereus and Rhodamine-B 10 mg/kg. Conclusion: The outbreak of food poisoning because calamari like contaminated Bacillus cereus. We suggested the school committee to provide the socialization of harmful food for the students. The teachers should restrict the permission for the food vendor to sell at school.   Keywords: Bacillus cereus, , Food Poisoning, Outbreak, Rhodamine B, School Food


2020 ◽  
Vol 16 ◽  
Author(s):  
Bathinapatla Ayyappa ◽  
Suvardhan Kanchi ◽  
Myalowenkosi I. Sabela ◽  
Krishna Bisetty

BACKGROUND: Sucralose is a high intensity artificial sweetener sucralose and chemically known as 1,6-dichloro-1,6-dideoxy-β-D-fructofuranosyl-4-chloro-4-deoxy-α-D-galactopyranoside. It is used as a sweetener and flavour enhancer in foods and beverages. Due to its high stability at wider temperatures and pH, made its applicability in various food products throughout the world. As per Joint FAO/WHO Expert Group on Food Additives (JECFA) in 1990, the daily intake of sucralose is 0-15 mg/kg body weight. The literature reports suggest that sucralose has a possible health threat due to the presence of chlorine groups, thereby leading to the several illnesses. The growing interest on the use of SUC in the foods, makes it necessary in developing a fast, reliable, cost effective and reproducible analytical method to determine SUC in food samples. The detection of sucralose and other carbohydrates like fructose, glucose and sucrose is a challenging task owing to its: (i) unavailability of the charged functions and (ii) lack of absorption of strong chromophoric nature in the UV region. Therefore, separation of non-absorbing neutral molecules needs a careful procedure with the suitable electrolyte systems. METHODOLOGY: An indirect UV detection capillary electrophoretic method is described for the separation of sucralose in different food samples. It was achieved by nucleophile substitution (SN2) in the presence of amine as background electrolytes. The morpholine buffer showed good buffering capacity in terms of migration time (< 8.0 min) and baseline stability when compared to other amine buffers (ethylamine, piperidine, triethylamine). The analytical applications of proposed method showed by recovery percentages of sucralose in real and spiked samples on intra and inter-day basis at optimum experimental conditions of 0.2 M buffer concentration and pH 12.0 at 230 nm UV detection. RESULTS: The selection of BGE, UV detection wavelength, buffer concentration, buffer pH, cassette temperature and applied voltage were optimized to enhance the sensitivity and selectivity of the separation method. Recoveries obtained were ranging from 96.87 to 98.82 % for real samples and 94.45 to 98.06 % for spiked samples respectively. Linearity was studied in the range of 2-10 mM, and showed a correlation coefficients of 0.9942 with LOD and LOQ found to be 0.3804 mg L-1 and 1.5215 mg L-1 with % RSD (n = 5) ± 1.27 and 1.19 % with respect to migration time and peak area. Furthermore, to better understand the separation of sucralose with amine buffers were investigated computationally using HOMO-LUMO calculations. The obtained results showed that the band gap decreases in the presence of amine moiety irrespective of its nature. CONCLUSION: In the study, novel background electrolytic system was successfully applied to separate sucralose using indirect UV detector with capillary electrophoresis. The FT-IR results confirmed that the interaction of sucralose with different amine buffers to better understand the separation chemistry behind sucralose and amine complexes. Moreover, computational results indicate that the direction of charge transfer from the amine functionality to the glucofuranosyl ring in each amine derivative of sucralose confirms the strong interaction between sucralose and amines, which led in the baseline separation of sucralose in different food samples.


Author(s):  
Pedro Marcos Frugeri ◽  
Marcello Henrique da Silva Cavalcanti ◽  
Ayla Campos do Lago ◽  
Eduardo Costa Figueiredo ◽  
Cesar Ricardo Teixeira Tarley ◽  
...  

The Analyst ◽  
2006 ◽  
Vol 131 (8) ◽  
pp. 889 ◽  
Author(s):  
Tanin Tangkuaram ◽  
Jared Q. Gerlach ◽  
Yun Xiang ◽  
Abdel-Nasser Kawde ◽  
Zong Dai ◽  
...  

Author(s):  
Kashaf Junaid ◽  
Hasan Ejaz ◽  
Iram Asim ◽  
Sonia Younas ◽  
Humaira Yasmeen ◽  
...  

This study evaluates bacteriological profiles in ready-to-eat (RTE) foods and assesses antibiotic resistance, extended-spectrum β-lactamase (ESBL) production by gram-negative bacteria, and heavy metal tolerance. In total, 436 retail food samples were collected and cultured. The isolates were screened for ESBL production and molecular detection of ESBL-encoding genes. Furthermore, all isolates were evaluated for heavy metal tolerance. From 352 culture-positive samples, 406 g-negative bacteria were identified. Raw food samples were more often contaminated than refined food (84.71% vs. 76.32%). The predominant isolates were Klebsiella pneumoniae (n = 76), Enterobacter cloacae (n = 58), and Escherichia coli (n = 56). Overall, the percentage of ESBL producers was higher in raw food samples, although higher occurrences of ESBL-producing E. coli (p = 0.01) and Pseudomonas aeruginosa (p = 0.02) were observed in processed food samples. However, the prevalence of ESBL-producing Citrobacter freundii in raw food samples was high (p = 0.03). Among the isolates, 55% were blaCTX-M, 26% were blaSHV, and 19% were blaTEM. Notably, heavy metal resistance was highly prevalent in ESBL producers. These findings demonstrate that retail food samples are exposed to contaminants including antibiotics and heavy metals, endangering consumers.


2011 ◽  
Vol 74 (2) ◽  
pp. 240-247 ◽  
Author(s):  
MIGUELÁNGEL PAVÓN ◽  
ISABEL GONZÁLEZ ◽  
MARÍA ROJAS ◽  
NICOLETTE PEGELS ◽  
ROSARIO MARTÍN ◽  
...  

The genus Alternaria is considered one of the most important fungal contaminants of vegetables, fruits, and cereals, producing several mycotoxins that can withstand food processing methods. Conventional methods for Alternaria identification and enumeration are laborious and time-consuming, and they might not detect toxigenic molds inactivated by food processing. In this study, a PCR method has been developed for the rapid identification of Alternaria spp. DNA in foodstuffs, based on oligonucleotide primers targeting the internal transcribed spacer (ITS) 1 and ITS2 regions of the rRNA gene. The specificity of the Alternaria-specific primer pair designed (Dir1ITSAlt–Inv1ITSAlt) was verified by PCR analysis of DNA from various Alternaria spp., and also from several fungal, bacterial, yeast, animal, and plant species. The detection limit of the method was 102 CFU/ml in viable culture, heated culture, or experimentally inoculated tomato pulp. The applicability of the method for detection of Alternaria spp. DNA in foodstuffs was assessed by testing several commercial samples. Alternaria DNA was detected in 100% of spoiled tomato samples, 8% of tomato products, and 36.4% of cereal-based infant food samples analyzed.


Sign in / Sign up

Export Citation Format

Share Document