Numerical simulation of dynamic response of water in buried pipeline under explosion

2017 ◽  
Vol 21 (7) ◽  
pp. 2798-2806 ◽  
Author(s):  
Mohsen Parviz ◽  
Babak Aminnejad ◽  
Alireza Fiouz
2013 ◽  
Vol 671-674 ◽  
pp. 519-522 ◽  
Author(s):  
Guo Fu Xu ◽  
Zheng Dong Deng ◽  
Fei Fan Deng ◽  
Guo Bin Liu

When the shock wave caused by explosion in geotechnical medium encountered buried pipeline, the buried pipeline may be destroyed. Use the LS-DYNA program to describe the deformation of buried pipelines under explosion ground shock. The results indicate that the process of the stress on pipe is instantaneous, and the back of buried pipelines against explosion center suffers greater instantaneous pulling stress in axis direction. The stress on the pipes, which is brought by the weaponary explosion, is involved with the distance between the pipe and explosion center and the diameter of pipe, among which the former involves greater. And the smaller pipe would get greater shock.


Author(s):  
Hongyuan Jing ◽  
Qinglu Deng ◽  
Jianbin Hao ◽  
Bing Han ◽  
Liangliang Li

Theoretical analysis methods are discussed to estimate additional stresses of shallow buried oil and gas pipeline caused by rock fall impaction. The process of impaction is simulated using finite elements software, in the model a 1 m3 square shape falling hard rock impacts soil ground upright of pipe with a vertical velocity, and dynamic response of pipeline is analyzed. The impact force, soil additional stresses, pipe displacement and additional stresses in the impaction process are studied. The effect of pipeline buried depth and rock velocity to the impaction also discussed. Results show that the impaction process is very short and the duration is about 10−3∼10−2s. The maximum impact force has approximately direct ratio with the velocity of rock. The additional vertical stress in soil caused by impaction load has a stress concentration region near the surface of pipe, and its distribution has the similar pattern with that in static load, but has a faster attenuation from the impaction center to sidewall. The most dangerous pipe cross-section appears in the underside of impaction center, and the maximum additional equivalent stress appears in the top of the cross-section, and has an approximately direct ratio with the velocity of rock if other impaction conditions are confirmed. The buried depth of pipeline has major influence to impaction. Large thickness of soil cover has marked effect on improve the protection of pipeline. According the study, shallow buried pipeline has weak defense to rock fall. The additional internal force and stress of pipeline caused by impaction of rock fall can be approximately estimated using theoretical methods or numerical simulation.


2014 ◽  
Vol 529 ◽  
pp. 102-107
Author(s):  
Hai Bo Luo ◽  
Ying Yan ◽  
Xiang Ji Meng ◽  
Tao Tao Zhang ◽  
Zu Dian Liang

A 7.8m/s vertical drop simulate of a full composite fuselage section was conducted with energy-absorbing floor to evaluate the crashworthiness features of the fuselage section and to predict its dynamic response to dummies in future. The 1.52m diameter fuselage section consists of a high strength upper fuselage frame, one stiff structural floor and an energy-absorbing subfloor constructed of Rohacell foam blocks. The experimental data from literature [6] were analyzed and correlated with predictions from an impact simulation developed using the nonlinear explicit transient dynamic computer code MSC.Dytran. The simulated average acceleration did not exceed 13g, by contrast with experimental results, whose relative error is less than 11%. The numerical simulation results agree with experiments well.


2013 ◽  
Vol 765-767 ◽  
pp. 3158-3161
Author(s):  
Jun Liu ◽  
Zheng Li Zhang

Tests of bird strike have been carried out on plate made from LY-12 Aluminium. The test was down with the projectile impacting the target perpendicularly at velocity of 40m/s, 80m/s, 120m/s respectively. The displacement-time history curves and strain-time history curves of on LY-12 Aluminium plate were measured. The good agreement of the results between two specimens in one group indicated that the results tested in the presnet paper are reliable. The dynamic response of the plate and damage modes of the bird influenced by striking velocity were analyzed. The peak value of the displacement linear enlarged with the increasing of the striking velocity. The test results in the present paper provided valuable data for aircraft design impacted by bird, and also provided abundant test datas for the numerical simulation model applied in bird striking.


Author(s):  
Tomoaki Utsunomiya ◽  
Shigeo Yoshida ◽  
Soichiro Kiyoki ◽  
Iku Sato ◽  
Shigesuke Ishida

In this paper, dynamic response of a Floating Offshore Wind Turbine (FOWT) with spar-type floating foundation at power generation is presented. The FOWT mounts a 100kW wind turbine of down-wind type, with the rotor’s diameter of 22m and a hub-height of 23.3m. The floating foundation consists of PC-steel hybrid spar. The upper part is made of steel whereas the lower part made of prestressed concrete segments. The FOWT was installed at the site about 1km offshore from Kabashima Island, Goto city, Nagasaki prefecture on June 11th, 2012. Since then, the field measurement had been made until its removal in June 2013. In this paper, the dynamic behavior during the power generation is presented, where the comparison with the numerical simulation by aero-hydro-servo-mooring dynamics coupled program is made.


Sign in / Sign up

Export Citation Format

Share Document