Numerical Simulation on the Dynamic Response of Buried Pipelines Subjected to Blast Loads

2013 ◽  
Vol 671-674 ◽  
pp. 519-522 ◽  
Author(s):  
Guo Fu Xu ◽  
Zheng Dong Deng ◽  
Fei Fan Deng ◽  
Guo Bin Liu

When the shock wave caused by explosion in geotechnical medium encountered buried pipeline, the buried pipeline may be destroyed. Use the LS-DYNA program to describe the deformation of buried pipelines under explosion ground shock. The results indicate that the process of the stress on pipe is instantaneous, and the back of buried pipelines against explosion center suffers greater instantaneous pulling stress in axis direction. The stress on the pipes, which is brought by the weaponary explosion, is involved with the distance between the pipe and explosion center and the diameter of pipe, among which the former involves greater. And the smaller pipe would get greater shock.

2013 ◽  
Vol 477-478 ◽  
pp. 77-80 ◽  
Author(s):  
Guo Fu Xu ◽  
Zheng Dong Deng ◽  
Chong Ji ◽  
Jing Jing Jia

Buried pipelines are important lifeline engineering. During war conventional weapons blasting in the air would induce indirect ground shock, and the shock to the buried pipeline can lead to the paralyzed of urban economic and social function. And the numerical simulation of the dynamic damage of buried pipeline is complicated and time consuming, so this article using the equivalent static load method proposes analytic solution method of stress calculation of buried pipeline under ground shock. Through comparing the results calculated by analytic solution method and numerical solution, it shows that the analytical solution is feasible in engineering application.


2017 ◽  
Vol 21 (7) ◽  
pp. 2798-2806 ◽  
Author(s):  
Mohsen Parviz ◽  
Babak Aminnejad ◽  
Alireza Fiouz

Author(s):  
Hongyuan Jing ◽  
Qinglu Deng ◽  
Jianbin Hao ◽  
Bing Han ◽  
Liangliang Li

Theoretical analysis methods are discussed to estimate additional stresses of shallow buried oil and gas pipeline caused by rock fall impaction. The process of impaction is simulated using finite elements software, in the model a 1 m3 square shape falling hard rock impacts soil ground upright of pipe with a vertical velocity, and dynamic response of pipeline is analyzed. The impact force, soil additional stresses, pipe displacement and additional stresses in the impaction process are studied. The effect of pipeline buried depth and rock velocity to the impaction also discussed. Results show that the impaction process is very short and the duration is about 10−3∼10−2s. The maximum impact force has approximately direct ratio with the velocity of rock. The additional vertical stress in soil caused by impaction load has a stress concentration region near the surface of pipe, and its distribution has the similar pattern with that in static load, but has a faster attenuation from the impaction center to sidewall. The most dangerous pipe cross-section appears in the underside of impaction center, and the maximum additional equivalent stress appears in the top of the cross-section, and has an approximately direct ratio with the velocity of rock if other impaction conditions are confirmed. The buried depth of pipeline has major influence to impaction. Large thickness of soil cover has marked effect on improve the protection of pipeline. According the study, shallow buried pipeline has weak defense to rock fall. The additional internal force and stress of pipeline caused by impaction of rock fall can be approximately estimated using theoretical methods or numerical simulation.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Min Wang ◽  
Mingshou Zhong ◽  
Yuan Long ◽  
Kai Ding ◽  
Xingbo Xie ◽  
...  

With the combination of model experiment and numerical simulation, we explore the effect of collapse height, weight, and pipe-soil stiffness ratio on dynamic strain of shallow buried metal pipe under the collapse impact load. By analyzing the strain at different measuring points of the buried pipeline, the strain law of the buried pipeline under the collapse impact load is obtained. Based on the range analysis and variance significance analysis, it was found that the pipe-soil stiffness ratio has a more significant impact on the dynamic strain of the buried pipeline under impact compared to the collapse height and the weight. Then, the numerical simulation method was used to further analyze the effect of pipe-soil stiffness ratio on the dynamic response of buried pipelines; the following conclusions are drawn: As the stiffness ratio of pipe-soil increases, the plastic stress and strain of the buried pipeline will decrease, and influence of the pipeline by the collapse impact is slighter.


Author(s):  
Prigiarto Hokkal Yonatan ◽  
Filip Van den Abeele ◽  
Jean-Christophe Ballard

Designing the cover height of buried pipelines to prevent them from buckling requires a method that can thoroughly and realistically model the phenomenon. This paper introduces a new technique to assess the risk of upheaval buckling (UHB) by using backfill soil springs (BFSS) to represent the uplift resistance provided by the backfill soil on top of a buried pipeline. This paper investigates the pre-buckling pipeline behavior related to UHB and highlights some of the key parameters governing the analysis. UHB assessment based on a case study was carried out and the results were then compared with those obtained from force-equilibrium methods generally used in the industry. The comparison shows that UHB assessment can be performed more rigorous using BFSS than using force-equilibrium methods. Therefore, using BFSS for UHB assessment improve the reliability in cover height design.


2021 ◽  
Vol 12 (2) ◽  
pp. 03120003
Author(s):  
Ronghuan Xu ◽  
Ruinian Jiang ◽  
Tie-jun Qu

Author(s):  
YA. E. POROSHYNA ◽  
◽  
P. S. UTKIN ◽  

The problem of shock wave - dense particle layer interaction is a fundamental basis for the study of a more complex process of dust explosion or dust-layered detonation. The work presents results of numerical simulation of the experiment on interaction of an SW with particles layer deposited on the impermeable wall.


Author(s):  
Lihong Yang ◽  
Xuyang Li ◽  
Fan Zi ◽  
Shijie Yang ◽  
Zexu Zhang ◽  
...  

Author(s):  
Yun Jiao ◽  
Chengpeng Wang

An experimental study is conducted on the qualitative visualization of the flow field in separation and reattachment flows induced by an incident shock interaction by several techniques including shear-sensitive liquid crystal coating (SSLCC), oil flow, schlieren, and numerical simulation. The incident shock wave is generated by a wedge in a Mach 2.7 duct flow, where the strength of the interaction is varied from weak to moderate by changing the angle of attack α of the wedge from 8° and 10° to 12°. The stagnation pressure upstream was set to approximately 607.9 kPa. The SSLCC technique was used to visualize the surface flow characteristics and analyze the surface shear stress fields induced by the initial incident shock wave over the bottom wall and sidewall experimentally which resolution is 3500 × 200 pixels, and the numerical simulation was also performed as the supplement for a clearer understanding to the flow field. As a result, surface shear stress over the bottom wall was visualized qualitatively by SSLCC images, and flow features such as separation/reattachment and the variations of position/size of separation bubble with wedge angle were successfully distinguished. Furthermore, analysis of shear stress trend over the bottom wall by a hue value curve indicated that the relative magnitude of shear stress increased significantly downstream of the separation bubble compared with that upstream. The variation trend of shear stress was consistent with the numerical simulation results, and the error of separation position was less than 2 mm. Finally, the three-dimensional schematic of incident shock-induced interaction has been achieved by qualitative summary by multiple techniques, including SSLCC, oil flow, schlieren, and numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document