Design and Experiment of an Automatic Temperature Control Device of Composite Shape-Stabilized Phase Change Material for Concrete Box Bridges

Author(s):  
Zhen Wang ◽  
Jianting Zhou ◽  
Leng Liao ◽  
Jinquan Zhang ◽  
Huabin Zhang
Cryobiology ◽  
1969 ◽  
Vol 5 (5) ◽  
pp. 343-346 ◽  
Author(s):  
J.E. Carter ◽  
A.A. Beisang ◽  
F.F. Ahlgren ◽  
F.D. Dorman ◽  
E.F. Graham

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5343
Author(s):  
Miroslava Kavgic ◽  
Yaser Abdellatef

Phase change material (PCM)-enhanced building envelopes can control indoor temperatures and save energy. However, PCM needs to undergo a phase change transition from solid to liquid and back to be fully effective. Furthermore, most previous research integrated PCM with high embodied energy materials. This study aims to advance the existing research on integrating PCM into carbon-negative wall assemblies composed of hempcrete and applying temperature control strategies to improve wall systems’ performance while considering the hysteresis phenomenon. Four hempcrete and hempcrete-PCM (HPCM) wall design configurations were simulated and compared under different control strategies designed to reduce energy demand while enhancing the phase change transition of the microencapsulated PCM. The HPCM wall types outperformed the hempcrete wall assembly through heating (~3–7%) and cooling (~7.8–20.7%) energy savings. HPCM walls also maintained higher wall surface temperatures during the coldest days, lower during the warmest days, and within a tighter range than hempcrete assembly, thus improving the thermal comfort. However, the results also show that the optimal performance of thermal energy storage materials requires temperature controls that facilitate their charge and discharge. Hence, applied control strategies reduced heating and cooling energy demand in the range of ~4.4–21.5% and ~14.5–55%, respectively.


Author(s):  
Wenjun Xu ◽  
Longquan Liu ◽  
Junming Chen ◽  
Xinying Lv ◽  
Yongtao Yao

Abstract This paper introduces a new thermal control device which has not only low weight and high efficiency but also passive and active cooling capabilities. The thermal control device mainly consists of hollow graphene-enhanced-metallic microlattice material, phase change material (PCM) and a peristatic pump. The PCM is inside the spatial-interconnected millimeter-scale diameter tubes, which are the basic constitution of the hollow microlattice material, in addition, the peristatic pump was connected with the tubes and used to force the liquid-state PCM to circulate inside the interconnected thin tubes. Thus, the proposed thermal control device takes combined advantages of the ultralight and high thermal transfer properties of the hollow graphene-enhanced-metallic microlattice materials, the thermal storage capability of the PCM and forced convection of the PCM driven by the peristatic pump as the PCM is in liquid state. The manufacturing process of the active thermal control device was also developed and proposed, which mainly includes additive manufacturing, composite electroless plating, polymer etching, liquid phase change material injecting and the peristatic pump connecting. In addition to that, a thermal test system was built and the effective thermal conductivities of the thermal control device in passive cooling and with active cooling modes were experimentally studied. The thermal control device can absorb heat and actively dissipate heat by means of forced convection. Consequently, the proposed active thermal control device can be used to guarantee the electronic components and spacecrafts operate in a specific temperature range.


Author(s):  
Tae Su Kim ◽  
Yoon Sub Shin ◽  
Taig Young Kim ◽  
Jung-gi Seo ◽  
Bum-Seok Hyun ◽  
...  

2017 ◽  
Vol 730 ◽  
pp. 563-568 ◽  
Author(s):  
Atthakorn Thongtha ◽  
Hoy Yen Chan ◽  
Paisit Luangjok

This study investigated the application of phase change material and fins into photovoltaic panel. The experimental design was divided into 2 cases: conventional photovoltaic and photovoltaic with phase change material and fins. The thermal performance and electrical efficiency was tested under the solar radiation simulator between 500 and 1000 W/m2. The insolation intensity was tested by an incident-light photometer. The power of the nine halogen lamps was controlled by a simple voltage control device. It was found that temperature of normal PV module is constant after the tested time of 20 minutes. The temperatures of PV module with phase change material and fins were lower than a normal PV module throughout the testing duration. Approximately 2-6% of photovoltaic module temperatures have decreased and this have improved the electrical efficiency of about 1-4%. This indicated the use of phase change material and fins is able to decrease the photovoltaic module temperature and thus increase the efficiency of photovoltaic module cooling.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1902
Author(s):  
Ziqiang Liu ◽  
Juhua Huang ◽  
Ming Cao ◽  
Yafang Zhang ◽  
Jin Hu ◽  
...  

To improve the heat dissipation efficiency of batteries, the eutectic mass ratios of each component in the ternary low-melting phase change material (PCM), consisting of stearic acid (SA), palmitic acid (PA), and lauric acid (LA), was explored in this study. Subsequently, based on the principle of high thermal conductivity and low leakage, SA–PA–LA/expanded graphite (EG)/carbon fiber (CF) composite phase change material (CPCM) was prepared. A novel double-layer CPCM, with different melting points, was designed for the battery-temperature control test. Lastly, the thermal management performance of non-CPCM, single-layer CPCM, and double-layer CPCM was compared via multi-condition charge and discharge experiments. When the mass ratio of SA to PA is close to 8:2, better eutectic state is achieved, whereas the eutectic mass ratio of the components of SA–PA–LA in ternary PCM is 29.6:7.4:63. SA–PA–LA/EG/CF CPCM formed by physical adsorption has better mechanical properties, thermal stability, and faster heat storage and heat release rate than PCM. When the CF content in SA–PA–LA/EG/CF CPCM is 5%, and the mass ratio of SA–PA–LA to EG is 91:9, the resulting SA–PA–LA/EG/CF CPCM has lower leakage rate and better thermal conductivity. The temperature control effect of single-layer paraffin wax (PW)/EG/CF CPCM is evident when compared to the no-CPCM condition. However, the double-layer CPCM (PW/EG/CF and SA–PA–LA/EG/CF CPCM) can further reduce the temperature rise of the battery, effectively control the temperature and temperature difference, and primarily maintain the battery in a lower temperature range during usage. After adding an aluminum honeycomb to the double-layer CPCM, the double-layer CPCM exhibited better thermal conductivity and mechanical properties. Moreover, the structure showed better battery temperature control performance, while meeting the temperature control requirements during the charging and discharging cycles of the battery.


Sign in / Sign up

Export Citation Format

Share Document