Predicting Mechanical State of High-Speed Railway Elevated Station Track System Using a Hybrid Prediction Model

Author(s):  
Zhuoran Ma ◽  
Liang Gao
Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2876
Author(s):  
Yingying Zhang ◽  
Lingyu Zhou ◽  
Akim D. Mahunon ◽  
Guangchao Zhang ◽  
Xiusheng Peng ◽  
...  

The mechanical performance of China Railway Track System type II (CRTS II) ballastless track suitable for High-Speed Railway (HSR) bridges is investigated in this project by testing a one-quarter-scaled three-span specimen under thermal loading. Stress analysis was performed both experimentally and numerically, via finite-element modeling in the latter case. The results showed that strains in the track slab, in the cement-emulsified asphalt (CA) mortar and in the track bed, increased nonlinearly with the temperature increase. In the longitudinal direction, the zero-displacement section between the track slab and the track bed was close to the 1/8L section of the beam, while the zero-displacement section between the track slab and the box girder bridge was close to the 3/8L section. The maximum values of the relative vertical displacement between the track bed and the bridge structure occurred in the section at three-quarters of the span. Numerical analysis showed that the lower the temperature, the larger the tensile stresses occurring in the different layers of the track structure, whereas the higher the temperature, the higher the relative displacement between the track system and the box girder bridge. Consequently, quantifying the stresses in the various components of the track structure resulting from sudden temperature drops and evaluating the relative displacements between the rails and the track bed resulting from high-temperature are helpful in the design of ballastless track structures for high-speed railway lines.


2012 ◽  
Vol 253-255 ◽  
pp. 1273-1277
Author(s):  
Xue Dong Du ◽  
Na Ren

The research of high-speed railway running economic benefit is important to timely know well the train operation state for the railway administration. A prediction model of high-speed railway running economic benefit is proposed in this article based on Gray model. The Gray model is a good example to make accurate prediction of the development of matters. According to the data analysis of Beijing and Shanghai railway stations, we can know that the result of prediction model is accurate, so the prediction based on Gray model is scientific and reasonable in the practical application.


2017 ◽  
Vol 873 ◽  
pp. 220-224 ◽  
Author(s):  
Young Chan Kim ◽  
Mosbeh R. Kaloop ◽  
Jong Wan Hu

The performance prediction of High-speed railway bridges (HSRB) is vital to detect the behavior of bridges under different train’s speeds. This study aims to design a prediction model using the artificial neural network (ANN) to assess the performance of Yonjung high-speed bridge. A short-term health monitoring system is used to collect the behavior of bridge with different high-speed train’s speeds. The statistical analysis is utilized to evaluate the bridge under speeds 165 to 403 Km/h. The evaluation of bridge and prediction model showing that the bridge is safe, and the ANN is shown a good tool can be used to estimate a prediction model for the displacement of bridge girder.


2012 ◽  
Vol 569 ◽  
pp. 246-250 ◽  
Author(s):  
Xue Dong Du ◽  
Na Ren

Under the regional economic conditions, a passenger flow prediction model is proposed in the paper. It can predict high-speed railway passenger flow volume under the conditions of multi-mode, and guide the reasonable operation of high-speed railway effectively. According to the data analysis of Beijing and Tianjin railway stations, we can know that the reasonable ticket price plays an important role in high-speed railway operation benefit under regional economic conditions.


Author(s):  
Zhihui Zhu ◽  
Yongjiu Tang ◽  
Zhenning Ba ◽  
Kun Wang ◽  
Wei Gong

AbstractTo explore the effect of canyon topography on the seismic response of railway irregular bridge–track system that crosses a V-shaped canyon, seismic ground motions of the horizontal site and V-shaped canyon site were simulated through theoretical analysis with 12 earthquake records selected from the Pacific Earthquake Engineering Research Center (PEER) Strong Ground Motion Database matching the site condition of the bridge. Nonlinear seismic response analyses of an existing 11-span irregular simply supported railway bridge–track system were performed under the simulated spatially varying ground motions. The effects of the V-shaped canyon topography on the peak ground acceleration at bridge foundations and seismic responses of the bridge–track system were analyzed. Comparisons between the results of horizontal and V-shaped canyon sites show that the top relative displacement between adjacent piers at the junction of the incident side and the back side of the V-shaped site is almost two times that of the horizontal site, which also determines the seismic response of the fastener. The maximum displacement of the fastener occurs in the V-shaped canyon site and is 1.4 times larger than that in the horizontal site. Neglecting the effect of V-shaped canyon leads to the inappropriate assessment of the maximum seismic response of the irregular high-speed railway bridge–track system. Moreover, engineers should focus on the girder end to the left or right of the two fasteners within the distance of track seismic damage.


2012 ◽  
Vol 178-181 ◽  
pp. 1956-1960
Author(s):  
Xiao Yan Shen ◽  
Hao Xue Liu ◽  
Jia Liu

In order to scientifically decide the percentage of vehicle entering expressway rest area, based on analyzing the influencing factors relating to the percent of mainline traffic stopping, a BP neural network prediction model for it was put forward. Finally, The Xinzheng Rest Area (XRA) was taken as an example for verifying the feasibility of the prediction model and determining the influence degree of the Shijiazhuang-Wuhan high-speed railway on the percentage of mainline vehicles entering XRA. The result shows that the model had a high precision and reliability.


Sign in / Sign up

Export Citation Format

Share Document