An architecture of deep learning network based on ensemble empirical mode decomposition in precise identification of bearing vibration signal

2019 ◽  
Vol 33 (1) ◽  
pp. 41-50 ◽  
Author(s):  
V. Hung Nguyen ◽  
J. Sheng Cheng ◽  
Yang Yu ◽  
V. Trong Thai
Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1248
Author(s):  
Rafia Nishat Toma ◽  
Cheol-Hong Kim ◽  
Jong-Myon Kim

Condition monitoring is used to track the unavoidable phases of rolling element bearings in an induction motor (IM) to ensure reliable operation in domestic and industrial machinery. The convolutional neural network (CNN) has been used as an effective tool to recognize and classify multiple rolling bearing faults in recent times. Due to the nonlinear and nonstationary nature of vibration signals, it is quite difficult to achieve high classification accuracy when directly using the original signal as the input of a convolution neural network. To evaluate the fault characteristics, ensemble empirical mode decomposition (EEMD) is implemented to decompose the signal into multiple intrinsic mode functions (IMFs) in this work. Then, based on the kurtosis value, insignificant IMFs are filtered out and the original signal is reconstructed with the rest of the IMFs so that the reconstructed signal contains the fault characteristics. After that, the 1-D reconstructed vibration signal is converted into a 2-D image using a continuous wavelet transform with information from the damage frequency band. This also transfers the signal into a time-frequency domain and reduces the nonstationary effects of the vibration signal. Finally, the generated images of various fault conditions, which possess a discriminative pattern relative to the types of faults, are used to train an appropriate CNN model. Additionally, with the reconstructed signal, two different methods are used to create an image to compare with our proposed image creation approach. The vibration signal is collected from a self-designed testbed containing multiple bearings of different fault conditions. Two other conventional CNN architectures are compared with our proposed model. Based on the results obtained, it can be concluded that the image generated with fault signatures not only accurately classifies multiple faults with CNN but can also be considered as a reliable and stable method for the diagnosis of fault bearings.


2022 ◽  
Author(s):  
J.M. González-Sopeña

Abstract. In the last few years, wind power forecasting has established itself as an essential tool in the energy industry due to the increase of wind power penetration in the electric grid. This paper presents a wind power forecasting method based on ensemble empirical mode decomposition (EEMD) and deep learning. EEMD is employed to decompose wind power time series data into several intrinsic mode functions and a residual component. Afterwards, every intrinsic mode function is trained by means of a CNN-LSTM architecture. Finally, wind power forecast is obtained by adding the prediction of every component. Compared to the benchmark model, the proposed approach provides more accurate predictions for several time horizons. Furthermore, prediction intervals are modelled using quantile regression.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3125
Author(s):  
Zou ◽  
Chen ◽  
Liu

Considering the lack of precision in transforming measured micro-electro-mechanical system (MEMS) accelerometer output signals into elevation signals, this paper proposes a bridge dynamic displacement reconstruction method based on the combination of ensemble empirical mode decomposition (EEMD) and time domain integration, according to the vibration signal traits of a bridge. Through simulating bridge analog signals and verifying a vibration test bench, four bridge dynamic displacement monitoring methods were analyzed and compared. The proposed method can effectively eliminate the influence of low-frequency integral drift and high-frequency ambient noise on the integration process. Furthermore, this algorithm has better adaptability and robustness. The effectiveness of the method was verified by field experiments on highway elevated bridges.


Author(s):  
Wei Guo

Condition monitoring and fault diagnosis for rolling element bearings is an imperative part for preventive maintenance procedures and reliability improvement of rotating machines. When a localized fault occurs at the early stage of real bearing failures, the impulses generated by the defect are relatively weak and usually overwhelmed by large noise and other higher-level macro-structural vibrations generated by adjacent machine components and machines. To indicate the bearing faulty state as early as possible, it is necessary to develop an effective signal processing method for extracting the weak bearing signal from a vibration signal containing multiple vibration sources. The ensemble empirical mode decomposition (EEMD) method inherits the advantage of the popular empirical mode decomposition (EMD) method and can adaptively decompose a multi-component signal into a number of different bands of simple signal components. However, the energy dispersion and many redundant components make the decomposition result obtained by the EEMD losing the physical significance. In this paper, to enhance the decomposition performance of the EEMD method, the similarity criterion and the corresponding combination technique are proposed to determine the similar signal components and then generate the real mono-component signals. To validate the effectiveness of the proposed method, it is applied to analyze raw vibration signals collected from two faulty bearings, each of which involves more than one vibration sources. The results demonstrate that the proposed method can accurately extract the bearing feature signal; meanwhile, it makes the physical meaning of each IMF clear.


Generally, two or more faults occur simultaneously in the bearings. These Compound Faults (CF) in bearing, are most difficult type of faults to detect, by any data-driven method including machine learning. Hence, it is a primary requirement to decompose the fault vibration signals logically, so that frequencies can be grouped in parts. Empirical Mode Decomposition (EMD) is one of the simplest techniques of decomposition of signals. In this paper we have used Ensemble Empirical Mode Decomposition (EEMD) technique for compound fault detection/identification. Ensembled Empirical Mode Decomposition is found useful, where a white noise helps to detect the bearing frequencies. The graphs show clearly the capability of EEMD to detect the multiple faults in rolling bearings.


Entropy ◽  
2018 ◽  
Vol 21 (1) ◽  
pp. 18 ◽  
Author(s):  
Ziying Zhang ◽  
Xi Zhang ◽  
Panpan Zhang ◽  
Fengbiao Wu ◽  
Xuehui Li

Dual-tree complex wavelet transform has been successfully applied to the composite diagnosis of a gearbox and has achieved good results. However, it has some fatal weaknesses, so this paper proposes an improved dual-tree complex wavelet transform (IDTCWT), and combines minimum entropy deconvolution (MED) to diagnose the composite fault of a gearbox. Firstly, the number of decomposition levels and the effective sub-bands of the DTCWT are adaptively determined according to the correlation coefficient matrix. Secondly, frequency mixing is removed by notch filter. Thirdly, each of the obtained sub-bands further reduces the noise by minimum entropy deconvolution. Then, the proposed method and the existing adaptive noise reduction methods, such as empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), and variational mode decomposition (VMD), are used to decompose the two sets of simulation signals in comparison, and the feasibility of the proposed method has been verified. Finally, the proposed method is applied to the compound fault vibration signal of a gearbox. The results show the proposed method successfully extracts the outer ring fault at a frequency of 160 Hz, the gearbox fault with a characteristic frequency of 360 Hz and its double frequency of 720 Hz, and that there is no mode mixing. The method proposed in this paper provides a new idea for the feature extraction of a gearbox compound fault.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yang Cao ◽  
Xiaokang Zhou ◽  
Ke Yan

Monitoring and prediction of ground settlement during tunnel construction are of great significance to ensure the safe and reliable operation of urban tunnel systems. Data-driven techniques combining artificial intelligence (AI) and sensor networks are popular methods in the field, which have several advantages, including high prediction accuracy, efficiency, and low cost. Deep learning, as one of the advanced techniques in AI, is demanded for the tunnel settlement forecasting problem. However, deep neural networks often require a large amount of training data. Due to the tunnel construction, the available training data samples are limited, and the data are univariate (i.e., containing only the settlement data). In response to the above problems, this research proposes a deep learning model that only requires limited number of training data for short-period prediction of the tunnel surface settlement. In the proposed complete ensemble empirical mode decomposition with adaptive noise long short term memory (CEEMDAN-LSTM model), single-dimensional data is divided into multidimensional data by CEEMDAN through the complete ensemble empirical mode decomposition. Each component is then predicted by a LSTM neural network and superimposed for obtaining the final prediction result. Experimental results show that, compared with existing machine learning techniques and algorithms, this deep learning method has higher prediction accuracy and acceptable computational efficiency. In the case of small samples, this method can significantly improve the accuracy of time series forecasting.


Sign in / Sign up

Export Citation Format

Share Document