UV protective properties of cotton fabric treated with plasma, UV absorber, and reactive dye

2014 ◽  
Vol 15 (10) ◽  
pp. 2095-2104 ◽  
Author(s):  
Marija Gorjanc ◽  
Katja Jazbec ◽  
Miran Mozetič ◽  
Mateja Kert
2015 ◽  
Vol 1120-1121 ◽  
pp. 198-202
Author(s):  
Zahid Latif ◽  
Fan Liu ◽  
Lin Wei He ◽  
Ying Jie Cai

Cotton fabric was dyed with Liyuan Blue FL-RN reactive dye. The dye exhaustion and fixation percentages were calculated for all light, medium and dark shades. The dye shows very good exhaustion and fixation properties. Dyed samples were tested for light fastness property as per international standards. The results indicates the dye has a good light fastness property. The effect of UV absorber was studied in order to improve light fastness property. Cationic UV absorber CANFIX SUN was applied on the dyed cotton fabric by exhaust method. The results show that the color depth was similar after UV absorber treatment. In all the cases the use of UV absorber improved the light fastness of dyed fabrics as compared to untreated dyed samples.


2020 ◽  
Vol 63 (2) ◽  
pp. 525-536
Author(s):  
Hekmat I. Ibrahim ◽  
Reham Farouk ◽  
Elham A. El-karadly ◽  
Ahmed Elwahy ◽  
Abdalla. A. Mousa

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Katja Jazbec ◽  
Martin Šala ◽  
Miran Mozetič ◽  
Alenka Vesel ◽  
Marija Gorjanc

Low-pressure oxygen plasma created by an electrodeless radiofrequency (RF) discharge was applied to modify the properties of cellulosic fibrous polymer (cotton) in order to improve adsorption properties towards zinc oxide (ZnO) nanoparticles and to achieve excellent ultraviolet (UV) protective properties of cotton fabric. The chemical and physical surface modifications of plasma-treated cotton fabric were examined by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The mechanical properties of plasma-treated samples were evaluated, measuring strength and elongation of the fabrics. The quantity of zinc on the ZnO-functionalized cotton samples was determined using inductively coupled plasma mass spectrometry (ICP-MS) and the effectiveness of plasma treatment for UV protective properties of cotton fabrics was evaluated using UV-VIS spectrometry, measuring the UV protection factor (UPF). The results indicated that longer plasma treatment times cause higher concentration of oxygen functional groups on the surface of fibres and higher surface roughness of fibres. These two conditions are crucial in increasing the content of ZnO nanoparticles on the fibres, providing excellent UV protective properties of treated cotton, with UPF factor up to 65.93.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1188
Author(s):  
Klara Kostajnšek ◽  
Krste Dimitrovski

The paper presents an extension of existed cover factor theory more suitable for the evaluation of light penetration through a net woven fabrics structure. It also introduces a new simplified model of predicting the ultraviolet (UV) protective properties of woven fabrics assuming that the coefficient of reflection (KR), transmission (KT), and absorption (KA) of constitutive yarns are known. Since usually they are not, the procedure of preparation of simulation of proper woven fabric samples without interlacing and with known constructional parameters is also presented. The procedure finishes with a fast and cheap detection of missed coefficient for any type of yarns. There are differences between theoretical and measured results, which are not particularly significant in regard to the purpose and demands of investigation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lina Lin ◽  
Wenju Zhu ◽  
Cong Zhang ◽  
Md. Yousuf Hossain ◽  
Zubair Bin Sayed Oli ◽  
...  

AbstractThe conventional dyeing process requires a substantial amount of auxiliaries and water, which leaches hazardous colored effluents to the environment. Herein, a newly developed sustainable spray dyeing system has been proposed for cotton fabric in the presence of reactive dyes, which has the potential to minimize the textile dyeing industries environmental impact in terms of water consumption and save significant energy. The results suggest that fresh dye solution can be mixed with an alkali solution before spray dyeing to avoid the reactive dye hydrolysis phenomenon. After that, drying at 60–100 °C, wet fixation treating for 1–6 min, and combined treatments (wet fixation + drying) were sequentially investigated and then dye fixation percentages were around 63–65%, 52–70%, and above 80%, respectively. Following this, fixation conditions were optimized using L16 orthogonal designs, including wet fixation time, temperature, dye concentration, and pH with four levels where the “larger-the-better” function was selected to maximize the dye fixation rate. Additionally, the color uniformity and wash and rubbing fastnesses were at an acceptable level when both treatments were applied. Finally, the dyes were hydrolyzed after wet fixation, and the hydrolysis percentages were enhanced after the drying process.


2017 ◽  
Vol 13 (33) ◽  
pp. 378 ◽  
Author(s):  
Shekh Md. Mamun Kabir ◽  
Rezaul Karim ◽  
Khayrul Islam

In this study, a mixed bi-functional reactive dye was applied to the cotton and hemp woven fabrics. Their dyeing and fastness properties were compared. From the results, it was observed that the cotton fabric exhibits better exhaustion and levelness than hemp woven fabrics. The build-up and fastness properties of the two woven fabrics appeared to be almost similar.


2008 ◽  
Vol 64 (5) ◽  
pp. 113-117 ◽  
Author(s):  
Ryoko Yasukawa ◽  
Hiroki Higashitani ◽  
Hidekazu Yasunaga ◽  
Hiroshi Urakawa

Sign in / Sign up

Export Citation Format

Share Document