scholarly journals Functional Characterization of the Group I Alphabaculovirus Specific Gene ac73

2019 ◽  
Vol 34 (6) ◽  
pp. 701-711 ◽  
Author(s):  
Wei Shao ◽  
Lihong He ◽  
Qingxiu Chen ◽  
Jiang Li ◽  
Fei Deng ◽  
...  
Author(s):  
Manon Chadourne ◽  
Elodie Poumerol ◽  
Luc Jouneau ◽  
Bruno Passet ◽  
Johan Castille ◽  
...  

Spermatogenesis involves coordinated processes, including meiosis, to produce functional gametes. We previously reported Topaz1 as a germ cell-specific gene highly conserved in vertebrates. Topaz1 knockout males are sterile with testes that lack haploid germ cells because of meiotic arrest after prophase I. To better characterize Topaz1–/– testes, we used RNA-sequencing analyses at two different developmental stages (P16 and P18). The absence of TOPAZ1 disturbed the expression of genes involved in microtubule and/or cilium mobility, biological processes required for spermatogenesis. Moreover, a quarter of P18 dysregulated genes are long non-coding RNAs (lncRNAs), and three of them are testis-specific and located in spermatocytes, their expression starting between P11 and P15. The suppression of one of them, 4939463O16Rik, did not alter fertility although sperm parameters were disturbed and sperm concentration fell. The transcriptome of P18-4939463O16Rik–/– testes was altered and the molecular pathways affected included microtubule-based processes, the regulation of cilium movement and spermatogenesis. The absence of TOPAZ1 protein or 4930463O16Rik produced the same enrichment clusters in mutant testes despite a contrasted phenotype on male fertility. In conclusion, although Topaz1 is essential for the meiosis in male germ cells and regulate the expression of numerous lncRNAs, these studies have identified a Topaz1 regulated lncRNA (4930463O16Rik) that is key for both sperm production and motility.


2021 ◽  
Vol 12 ◽  
Author(s):  
Revuru Bharadwaj ◽  
Sarma R. Kumar ◽  
Ashutosh Sharma ◽  
Ramalingam Sathishkumar

Plants are a remarkable source of high-value specialized metabolites having significant physiological and ecological functions. Genes responsible for synthesizing specialized metabolites are often clustered together for a coordinated expression, which is commonly observed in bacteria and filamentous fungi. Similar to prokaryotic gene clustering, plants do have gene clusters encoding enzymes involved in the biosynthesis of specialized metabolites. More than 20 gene clusters involved in the biosynthesis of diverse metabolites have been identified across the plant kingdom. Recent studies demonstrate that gene clusters are evolved through gene duplications and neofunctionalization of primary metabolic pathway genes. Often, these clusters are tightly regulated at nucleosome level. The prevalence of gene clusters related to specialized metabolites offers an attractive possibility of an untapped source of highly useful biomolecules. Accordingly, the identification and functional characterization of novel biosynthetic pathways in plants need to be worked out. In this review, we summarize insights into the evolution of gene clusters and discuss the organization and importance of specific gene clusters in the biosynthesis of specialized metabolites. Regulatory mechanisms which operate in some of the important gene clusters have also been briefly described. Finally, we highlight the importance of gene clusters to develop future metabolic engineering or synthetic biology strategies for the heterologous production of novel metabolites.


2004 ◽  
Vol 2004 (Fall) ◽  
Author(s):  
Angela Hirtreiter ◽  
Luis Figueiredo ◽  
Daniel Klunker ◽  
Bernd Haas ◽  
Debbie Ang* ◽  
...  

2020 ◽  
Author(s):  
Mahmudul Hasan ◽  
Milad Ahmed ◽  
Foeaz Ahmed ◽  
Jamil Ahmed ◽  
Mst Rubaiat Nazneen Akhand ◽  
...  

AbstractCorchorus capsularis, commonly known as jute occupies the leading position in the production of natural fibre and fibre based products alongside lower environmental threat. Nowadays, the study of lignin biosynthesis pathways with other molecular basis of fibres formation are being more focused for its economic perspective. Small noncoding ∼21 to 24 nt nucleotides long microRNAs play significant roles in regulating the gene expression as well as different functions in cellular growth and development. Here, the study adopted a comprehensive in silico approach to identify and characterize the conserved miRNAs in the genome of C. capsularis including specific gene targets involved in the crucial cellular process. Expressed Sequence Tags (ESTs) based homology search of 3350 known miRNAs of dicotyledons were allowed against 763 non-redundant ESTs of jute genome resulted in the prediction of 5 potential miRNA candidates belonging five different miRNA families (miR1536, miR9567-3p, miR4391, miR11300, and miR8689). The putative miRNAs were 18 nucleotide length, within a range of -0.49 to -1.56 MFEI values and 55% to 61% of (A+U) content of their correspondence pre-miRNAs. A total of 1052 gene targets of putative miRNAs were identified and their functions were extensively analyzed. Most of the gene targets were involved in plant growth, cell cycle regulation, organelle synthesis, developmental process and environmental responses. The five gene targets, namely, NAC Domain Containing Protein, WRKY DNA binding protein, 3-dehydroquinate synthase, S-adenosyl-L-Met–dependent methyl transferase and Vascular-related NAC-Domain were found to be involved in the lignin biosynthesis, phenylpropanoid pathways and secondary wall formation which could play significant roles in the overall fibre biogenesis. The characterization of conserved miRNAs and their functional annotation of specific gene targets might enhance the more miRNA discovery, strengthening the complete understanding of miRNAs association in the cellular basis of lignin biosynthesis towards the production of high standard jute products.


2020 ◽  
Vol 477 (7) ◽  
pp. 1261-1286 ◽  
Author(s):  
Marie Anne Richard ◽  
Hannah Pallubinsky ◽  
Denis P. Blondin

Brown adipose tissue (BAT) has long been described according to its histological features as a multilocular, lipid-containing tissue, light brown in color, that is also responsive to the cold and found especially in hibernating mammals and human infants. Its presence in both hibernators and human infants, combined with its function as a heat-generating organ, raised many questions about its role in humans. Early characterizations of the tissue in humans focused on its progressive atrophy with age and its apparent importance for cold-exposed workers. However, the use of positron emission tomography (PET) with the glucose tracer [18F]fluorodeoxyglucose ([18F]FDG) made it possible to begin characterizing the possible function of BAT in adult humans, and whether it could play a role in the prevention or treatment of obesity and type 2 diabetes (T2D). This review focuses on the in vivo functional characterization of human BAT, the methodological approaches applied to examine these features and addresses critical gaps that remain in moving the field forward. Specifically, we describe the anatomical and biomolecular features of human BAT, the modalities and applications of non-invasive tools such as PET and magnetic resonance imaging coupled with spectroscopy (MRI/MRS) to study BAT morphology and function in vivo, and finally describe the functional characteristics of human BAT that have only been possible through the development and application of such tools.


Sign in / Sign up

Export Citation Format

Share Document