Accumulation of betulinic, oleanolic, and ursolic acids in In vitro cell cultures of Lantana camara L. and their significant cytotoxic effects on HeLa cell lines

2010 ◽  
Vol 15 (6) ◽  
pp. 1038-1046 ◽  
Author(s):  
Priyanka Srivastava ◽  
Naresh Kasoju ◽  
Utpal Bora ◽  
Rakhi Chaturvedi
2019 ◽  
Vol 7 (4) ◽  
pp. 91-96
Author(s):  
Isra'a Al-sobhi ◽  
◽  
Rawan Al-Ghabban ◽  
Soad Shaker Ali ◽  
Jehan Al-Amri ◽  
...  

2007 ◽  
Vol 17 (13) ◽  
pp. 3676-3681 ◽  
Author(s):  
Carlos A. Sanhueza ◽  
Carlos Mayato ◽  
Rubén P. Machı´n ◽  
José M. Padrón ◽  
Rosa L. Dorta ◽  
...  

2021 ◽  
Vol 4 (3) ◽  
pp. 192-201
Author(s):  
Mosab Yahya Al-Nour ◽  
Ahmed H Arbab ◽  
Mohammad Khalid Parvez ◽  
Arwa Y Mohamed ◽  
Mohammed S Al-Dosari

This study aimed to investigate the anticancer activity of Haplophyllum tuberculatum(Forsk.) aerial parts ethanol extract and fractions and reveal the potential anticancer targets, binding modes, pharmacokinetics, and toxicity properties of its phytoconstituents. MTT assay was used to investigate the anticancer activity. TargetNet, ChemProt version 2.0, and CLC-Pred web servers were used for virtual screening, and Cresset Flare software was used for molecular docking with the 26 predicted targets. Moreover, pkCSM, swiss ADME, and eMolTox web servers were used to predict pharmacokinetics and safety. Ethanolic extracts of H. tuberculatum on HepG2 and HeLa cell lines showed promising activities with IC50 values 54.12 and 48.1 µg/mL, respectively. Further, ethyl acetate fraction showed the highest cytotoxicity on HepG2 and HeLa cell lines with IC50 values 41.7 and 52.31 µg/mL. Of 70 compounds screened virtually, polygamain, justicidin A, justicidin B, haplotubine, kusunokinin, and flindersine were predicted as safe anticancer drugs candidates. They showed the highest binding scores with targets involved in cell growth, proliferation, survival, migration, tumor suppression, induction of apoptosis, metastasis, and drug resistance. Our findings revealed the potency of H. tuberculatum as a source of anticancer candidates that further studies should support.


2019 ◽  
Vol 23 (07n08) ◽  
pp. 908-915 ◽  
Author(s):  
Fatma Yurt ◽  
Kasim Ocakoglu ◽  
Ozge Er ◽  
Hale Melis Soylu ◽  
Mine Ince ◽  
...  

This study, subphthalocyanines (SubPc) and SubPc integrated TiO2 nanoparticles (SubPc-TiO[Formula: see text] were synthesized as novel photosensitizers. Their PDT effects were evaluated. Furthermore, nuclear imaging potential of [Formula: see text]I-labelled SubPc/SubPc-TiO2 were examined in mouse mammary carcinoma (EMT6) and cervix adenocarcinoma (HeLa) cell lines. The uptake results show that SubPc labelled with [Formula: see text]I radionuclide ([Formula: see text]I-SubPc) in EMT6 and HeLa cell lines was found to be approximately the same as in the WI38 cell line. However, the uptake values of SubPc-TiO2 labelled with [Formula: see text]I ([Formula: see text]I-SubPc-TiO[Formula: see text] in EMT6 and HeLa cell lines were determined to be two times higher than in the WI38 cell line. In other words, the target/non-target tissue ratio was identified as two in the EMT6 and HeLa cell lines. [Formula: see text]I-SubPc-TiO2 is promising for imaging or treatment of breast and cervix tumors. In vitro photodynamic therapy studies have shown that SubPc and SubPc-TiO2 are suitable agents for PDT. In addition, SubPc-TiO2 has higher phototoxicity than SubPc. As a future study, in vivo experiments will be held and performed in tumor-bearing nude mice.


2006 ◽  
Vol 89 (2) ◽  
pp. 474-483 ◽  
Author(s):  
Milton N. Goldstein ◽  
Irving J. Slotnick ◽  
L. J. Journey

2021 ◽  
Vol 15 (3) ◽  
pp. 157-164
Author(s):  
Mahsa Daneshmand ◽  
◽  
Jamileh Salar Amoli ◽  
Tahereh Ali Esfahani ◽  
◽  
...  

Background: Cotton seed is one of the main sources of protein in animal feeds, containing gossypol, which has been shown to have toxic effects. Results reported by various studies also indicate the anti-cancer effects of gossypol on various cell types. However, its toxic effects on human and animal cells have not been fully established. This study was planned to investigate, for the first time, the cytotoxic effects and oxidative stress induced by gossypol on normal Bovine Kidney (BK) and HeLa cell lines, representing typical healthy and cancer cells, respectively. Methods: The BK and HeLa cell lines were treated for 24, 48 or 72 hours with 5, 10 or 20 ppm of gossypol (+/-). The cellular bio-availability and cytotoxicity were measured by MTT assay. The catalase and Malondialdehyde (MDA) levels were also measured to represent the oxidative stress parameters. Results: The percentages of cytotoxicity in BK and HeLa cell lines were calculated at a gossypol concentration of 5, 10 and 20 ppm over 24, 48 or 72 hours of incubation, respectively. The Lethal Concentration 50 (lC50) values were also determined for the two cell lines. No changes in the catalase and lipid peroxidase activities were observed in either cell line. Conclusion: The percentage of the gossypol cytotoxicity was concentration-dependent. By comparing the IC50 in both cell lines using one-way Analysis of Variance (ANOVA) analysis, a significant difference was observed, suggesting that Hela cells were less sensitive to gossypol than the BK cells. Lack of changes in the oxidative stress, as tested by catalase and MDA assays, demonstrated that gossypol did not induce oxidative stress in either cell line.


Sign in / Sign up

Export Citation Format

Share Document