scholarly journals Correction to: Relationship between plasma exposure of zolpidem and CYP2D6 genotype in healthy Korean subjects

Author(s):  
Eui Hyun Jung ◽  
Choong-Min Lee ◽  
Ji-Yeong Byeon ◽  
Hyo-Bin Shin ◽  
Kyung-Yul Oh ◽  
...  
2020 ◽  
Vol 43 (9) ◽  
pp. 976-981
Author(s):  
Eui Hyun Jung ◽  
Choong-Min Lee ◽  
Ji-Yeong Byeon ◽  
Hyo-Bin Shin ◽  
Kyung-Yul Oh ◽  
...  

1993 ◽  
Vol 70 (06) ◽  
pp. 0998-1004 ◽  
Author(s):  
Páll T Önundarson ◽  
H Magnús Haraldsson ◽  
Lena Bergmann ◽  
Charles W Francis ◽  
Victor J Marder

SummaryThe relationship between lytic state variables and ex vivo clot lysability was investigated in blood drawn from patients during streptokinase administration for acute myocardial infarction. A lytic state was already evident after 5 min of treatment and after 20 min the plasminogen concentration had decreased to 24%, antiplasmin to 7% and fibrinogen 0.2 g/1. Lysis of radiolabeled retracted clots in the patient plasmas decreased from 37 ± 8% after 5 min to 21 ± 8% at 10 min and was significantly lower (8 ± 9%, p <0.005) in samples drawn at 20, 40 and 80 min. Clot lysability correlated positively with the plasminogen concentration (r = 0.78, p = 0.003), but not with plasmin activity. Suspension of radiolabeled clots in normal plasma pre-exposed to 250 U/ml two-chain urokinase for varying time to induce an in vitro lytic state was also associated with decreasing clot lysability in direct proportion with the duration of prior plasma exposure to urokinase. The decreased lysability correlated with the time-dependent reduction in plasminogen concentration (r = 0.88, p <0.0005). Thus, clot lysability decreases in conjunction with the development of the lytic state and the associated plasminogen depletion. The lytic state may therefore limit reperfusion during thrombolytic treatment.


1991 ◽  
Vol 223 ◽  
Author(s):  
Neeta Agrawal ◽  
R. D. Tarey ◽  
K. L. Chopra

ABSTRACTArgon plasma exposure has been used to induce surface chemical modification of aluminium thin films, causing a drastic change in etch rate in standard HNO3/CH3COOH/H3PO4 etchant. The inhibition period was found to increase with power and Ar plasma exposure time. Auger electron and x-ray photoelectron spectroscopies have indicated formation of an aluminium fluoride (AlF3) surface layer due to fluorine contamination originating from the residue left in the plasma chamber during CF4 processing. The high etch selectivity between unexposed and argon plasma exposed regions has been exploited as a new technique for resistless patterning of aluminium.


2021 ◽  
pp. 101014
Author(s):  
M. Miyamoto ◽  
Y. Sugimoto ◽  
D. Nishijima ◽  
M.J. Baldwin ◽  
R.P. Doerner ◽  
...  

Author(s):  
Daniel Carranza-Leon ◽  
Alyson L. Dickson ◽  
Andrea Gaedigk ◽  
C. Michael Stein ◽  
Cecilia P. Chung

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Andrea DeCensi ◽  
Harriet Johansson ◽  
Thomas Helland ◽  
Matteo Puntoni ◽  
Debora Macis ◽  
...  

AbstractLow-dose tamoxifen halves recurrence in non-invasive breast cancer without significant adverse events. Some adjuvant trials with tamoxifen 20 mg/day had shown an association between low endoxifen levels (9–16 nM) and recurrence, but no association with CYP2D6 was shown in the NSABP P1 and P2 prevention trials. We studied the association of CYP2D6 genotype and tamoxifen metabolites with tumor biomarkers and recurrence in a randomized phase III trial of low-dose tamoxifen. Median (IQR) endoxifen levels at year 1 were 8.4 (5.3–11.4) in patients who recurred vs 7.5 (5.1–10.2) in those who did not recur (p = 0.60). Tamoxifen and metabolites significantly decreased C-reactive protein (CRP, p < 0.05), and a CRP increase after 3 years was associated with higher risk of recurrence (HR = 4.37, 95% CI, 1.14–16.73, P = 0.03). In conclusion, endoxifen is below 9 nM in most subjects treated with 5 mg/day despite strong efficacy and there is no association with recurrence, suggesting that the reason for tamoxifen failure is not poor drug metabolism. Trial registration: ClinicalTrials.gov, Identifier: NCT01357772.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 889
Author(s):  
Klára Fajstavrová ◽  
Silvie Rimpelová ◽  
Dominik Fajstavr ◽  
Václav Švorčík ◽  
Petr Slepička

The development of new biocompatible polymer substrates is still of interest to many research teams. We aimed to combine a plasma treatment of fluorinated ethylene propylene (FEP) substrate with a technique of improved phase separation. Plasma exposure served for substrate activation and modification of surface properties, such as roughness, chemistry, and wettability. The treated FEP substrate was applied for the growth of a honeycomb-like pattern from polystyrene solution. The properties of the pattern strongly depended on the primary plasma exposure of the FEP substrate. The physico-chemical properties such as changes of the surface chemistry, wettability, and morphology of the prepared pattern were determined. The cell response of primary fibroblasts and osteoblasts was studied on a honeycomb pattern. The prepared honeycomb-like pattern from polystyrene showed an increase in cell viability and a positive effect on cell adhesion and proliferation for both primary fibroblasts and osteoblasts.


Sign in / Sign up

Export Citation Format

Share Document