scholarly journals Comparing the impact of presence patterns on energy demand in residential buildings using measured data and simulation models

2019 ◽  
Vol 12 (6) ◽  
pp. 985-998 ◽  
Author(s):  
Elena Cuerda ◽  
Olivia Guerra-Santin ◽  
J. J. Sendra ◽  
Fco. Javier Neila González
2020 ◽  
Vol 10 (3) ◽  
pp. 893 ◽  
Author(s):  
Laura Cirrincione ◽  
Maria La Gennusa ◽  
Giorgia Peri ◽  
Gianfranco Rizzo ◽  
Gianluca Scaccianoce ◽  
...  

In the line of pursuing better energy efficiency in human activities that would result in a more sustainable utilization of resources, the building sector plays a relevant role, being responsible for almost 40% of both energy consumption and the release of pollutant substances in the atmosphere. For this purpose, techniques aimed at improving the energy performances of buildings’ envelopes are of paramount importance. Among them, green roofs are becoming increasingly popular due to their capability of reducing the (electric) energy needs for (summer) climatization of buildings, hence also positively affecting the indoor comfort levels for the occupants. Clearly, reliable tools for the modelling of these envelope components are needed, requiring the availability of suitable field data. Starting with the results of a case study designed to estimate how the adoption of green roofs on a Sicilian building could positively affect its energy performance, this paper shows the impact of this technology on indoor comfort and energy consumption, as well as on the reduction of direct and indirect CO2 emissions related to the climatization of the building. Specifically, the ceiling surface temperatures of some rooms located underneath six different types of green roofs were monitored. Subsequently, the obtained data were used as input for one of the most widely used simulation models, i.e., EnergyPlus, to evaluate the indoor comfort levels and the achievable energy demand savings of the building involved. From these field analyses, green roofs were shown to contribute to the mitigation of the indoor air temperatures, thus producing an improvement of the comfort conditions, especially in summer conditions, despite some worsening during transition periods seeming to arise.


Proceedings ◽  
2019 ◽  
Vol 23 (1) ◽  
pp. 8
Author(s):  
Jean Rouleau ◽  
Louis Gosselin

Exhaust fans in residential buildings generate energy consumption first by the electricity that they require when operating, but also by extracting heat outside of the building. Nonetheless, these appliances are essential to ensure good indoor air quality. It is thus important to study how occupants in residential buildings use exhaust fans and to assess their impact on the energy performance of buildings. In this paper, a preliminary analysis on these two topics is made based on measured data recorded from a multi-residential building located in Quebec City, Canada. Data show that the use of exhaust fans is variable from a household to another. It was estimated that exhaust devices accounted for approximately 14% of the energy demand of the monitored building.


2018 ◽  
Vol 13 (s1) ◽  
pp. 15-28
Author(s):  
Boukarta Soufiane ◽  
Berezowska-Azzag Ewa

AbstractHousing is rated as one of the most commonly consuming energy field in terms of energy end-use with 41%. Regarding the transformations dealt by dwellers for functional and social uses. The aim of this paper is: Firstly, to highlight the non-controlled transformation process made by the occupant in Algeria; Secondly, to explore the impact of the energy load of such spatial transformations. The question is approached in two tracks, (i) Through Ecotect software’s simulations (ii) and measurements through a collection of energy end-use data. Basically, the energy demand is bound to dwelling’s spatial and socioeconomic criteria. Three cases studied showed consequently 2 positive and 1 negative energy load, in which two explanations may be given: Insulation quality that occupant is lacking facilities to improve may be stated as a physical explanation, as well as for the socio economic one, the density per dwelling plays a major role, but it is the income which explains within the two approaches more than 87% of the energy end use.


2021 ◽  
Vol 13 (17) ◽  
pp. 9491
Author(s):  
Manuel Carpio ◽  
David Carrasco

The increase in energy consumption that occurs in the residential sector implies a higher consumption of natural resources and, therefore, an increase in pollution and a degradation of the ecosystem. An optimal use of materials in the thermal envelope, together with efficient measures in the passive architectural design process, translate into lower energy demands in residential buildings. The objective of this study is to analyse and compare, through simulating different models, the impact of the shape factor on energy demand and CO2 emissions depending on the type of construction solution used in the envelope in a cold oceanic climate in South Chile. Five models with different geometries were considered based on their relationship between exposed surface and volume. Additionally, three construction solutions were chosen so that their thermal transmittance gradually complied with the values required by thermal regulations according to the climatic zone considered. Other parameters were equally established for all simulations so that their comparison was objective. Ninety case studies were obtained. Research has shown that an appropriate design, considering a shape factor suitable below 0.767 for the type of cold oceanic climate, implies a decrease in energy demand, which increased when considering architectural designs in the envelope with high values of thermal resistance.


2021 ◽  
Author(s):  
Miranda Rashani ◽  
Ardeshir Mahdavi

AbstractThe energy performance of residential buildings depends on a large number of interrelated factors. The present paper outlines an approach to developing a building thermal simulation model through real-time data and sensitivity analyses. To this end, three existing multi-family apartment buildings in Pristina, Kosovo, were selected. Initially, thermal simulation models were created using multiple data sources. Model outputs were further evaluated via comparison with available and measured data. Consequently, the most influential input parameters were identified and adjusted to calibrate the models. The resulting calibrated models can be deployed to investigate the potential of alternative retrofit measures.


2016 ◽  
Vol 23 (2) ◽  
pp. 241-251 ◽  
Author(s):  
Huseyin EROL ◽  
Irem DIKMEN ◽  
Talat BIRGONUL

Performance of the construction projects have been criticized for many years due to their low productivity rates and cost overruns as well as significant delays. Increasing number of dissatisfied customers compel practitioners to reform conventional practices of construction management. Lean construction has emerged as a result of these efforts in the industry. However, there are limited number of studies that demonstrate the practical benefits of lean construction applications. The aim of this paper is to untangle practical applications of lean construction and to reveal their benefits. A methodology was developed to compare the lean and non-lean scenarios of a residential building project by means of Monte Carlo simulation. Simulation models were generated through regular meetings held with construction planning experts. Research findings demonstrate that application of lean construction principles have a potential to improve the performance of projects by reducing both the total project duration and its expected variation. In addition, the study re­vealed that utilization of practical lean construction principles may result in a considerable amount of time reduction in wall construction and plastering activities of residential building projects. Although the findings of this study cannot be generalized, they are expected to encourage practitioners to adopt lean construction principles.


2020 ◽  
Vol 12 (17) ◽  
pp. 7153
Author(s):  
David Bienvenido-Huertas

State regulations play an important role to guarantee an appropriate building energy performance. As for the Spanish regulation, the limitation of energy consumption should be analyzed with simulation tools by using operational profiles. The profile of operational conditions of HVAC systems in residential buildings limits the use of heating and cooling systems. This paper studied the limitations of the residential profile in energy assessment processes through simulation tools. A case study was analyzed with three operational approaches and was placed in 8131 Spanish cities. The results showed that the use limitations of cooling systems lead to ignorance of an important percentage contribution in the cooling energy demand in some months of the year. The use of an operational profile with an extended calendar for cooling systems for the entire year would imply a more appropriate knowledge of the building energy performance in order to know the fulfilment of the state regulation and its correct energy classification.


2021 ◽  
Vol 13 (6) ◽  
pp. 3384
Author(s):  
Radwan Almasri ◽  
Abdullah Alardhi ◽  
Saad Dilshad

The demand for air conditioning is increasing day by day in the world’s hot and humid climate areas. Energy conservation in buildings can play a vital role in meeting this high cooling demand. This paper attempts to consider the impacts of energy efficiency and renewable energy measures on the energy demand of Saudi Arabia’s residential buildings. The energy analysis and economic feasibility analysis of thermal insulations are performed in this paper by investigating the effect of residential buildings’ thermal insulations on the economic feasibility of grid-connected photovoltaic systems. This was the combined effort of building owners and government, and buildings were examined if a photovoltaic system and thermal insulation were used. The study was conducted in the three climate zones in Saudi Arabia. The results showed that the building base case’s annual electrical energy consumption in Riyadh city was 67,095 kWh, Hail 57,373 kWh, and Abha 26,799 kWh. For the basic case-building in Riyadh, 69% of the total electrical energy was used for cooling and heating. Applying the Saudi Building Code requirement for Riyadh will provide only 18% of the total energy used for cooling and heating. RETScreen 6.1 software was used to design a photovoltaic system; the analysis was done using technical and economic indicators. The annual yield factor for Riyadh, Hail, and Abha was 1649 kWh/kWp/year, 1711 kWh/kWp/year, and 1765 kWh/kWp/year, respectively. The capacity factors for Riyadh, Hail, and Abha were 18.8%, 19.5%, and 20.1%, respectively. The Unified photovoltaic Levelized energy costs were 0.031, 0.030, and 0.029 $/kWh for Riyadh, Hail, and Abha, respectively. Finally, the Net Present Value and greenhouse gas emissions reduction have been estimated.


2016 ◽  
Vol 861 ◽  
pp. 151-159
Author(s):  
Georgios Gourlis ◽  
Farhang Tahmasebi ◽  
Ardeshir Mahdavi

Early design decisions with regard to building facade characteristics play a significant role in the resulting building's thermal performance. In this context, external metal mesh screens -used as a permanent second facade skin- are a rather new shading alternative, particularly in non-residential buildings. It has been suggested that such products can filter excessive incident solar radiation while maintaining the facade’s transparent quality. Given the multifaceted implications of this shading device for building energy performance, we undertook a detailed simulation-based study to evaluate the impact of metal mesh screens on annual energy demand for heating, cooling and electric lighting in different European climate zones. Possible design variations were considered in terms of mesh screen translucency, window to wall ratio and facade orientation. The feasibility of using such a shading strategy to provide passive cooling during summer was also explored, along with suitable ventilation scenarios. Toward this end, we examined a number of existing approaches to simulate metal mesh screens and identified their capabilities and limitations. A typical office space was tested in three European locations, taking local building construction standards into account. The results of this study can help planners in their choice of the appropriate shading strategy and provide recommendations for the application of metal mesh screens according to the climatic and architectural criteria.


Sign in / Sign up

Export Citation Format

Share Document