scholarly journals Investigating the Impact of Integration the Saudi Code of Energy Conservation with the Solar PV Systems in Residential Buildings

2021 ◽  
Vol 13 (6) ◽  
pp. 3384
Author(s):  
Radwan Almasri ◽  
Abdullah Alardhi ◽  
Saad Dilshad

The demand for air conditioning is increasing day by day in the world’s hot and humid climate areas. Energy conservation in buildings can play a vital role in meeting this high cooling demand. This paper attempts to consider the impacts of energy efficiency and renewable energy measures on the energy demand of Saudi Arabia’s residential buildings. The energy analysis and economic feasibility analysis of thermal insulations are performed in this paper by investigating the effect of residential buildings’ thermal insulations on the economic feasibility of grid-connected photovoltaic systems. This was the combined effort of building owners and government, and buildings were examined if a photovoltaic system and thermal insulation were used. The study was conducted in the three climate zones in Saudi Arabia. The results showed that the building base case’s annual electrical energy consumption in Riyadh city was 67,095 kWh, Hail 57,373 kWh, and Abha 26,799 kWh. For the basic case-building in Riyadh, 69% of the total electrical energy was used for cooling and heating. Applying the Saudi Building Code requirement for Riyadh will provide only 18% of the total energy used for cooling and heating. RETScreen 6.1 software was used to design a photovoltaic system; the analysis was done using technical and economic indicators. The annual yield factor for Riyadh, Hail, and Abha was 1649 kWh/kWp/year, 1711 kWh/kWp/year, and 1765 kWh/kWp/year, respectively. The capacity factors for Riyadh, Hail, and Abha were 18.8%, 19.5%, and 20.1%, respectively. The Unified photovoltaic Levelized energy costs were 0.031, 0.030, and 0.029 $/kWh for Riyadh, Hail, and Abha, respectively. Finally, the Net Present Value and greenhouse gas emissions reduction have been estimated.

2017 ◽  
Vol 24 (2) ◽  
pp. 358-382 ◽  
Author(s):  
Minhyun LEE ◽  
Taehoon HONG ◽  
Choongwan KOO ◽  
Chan-Joong KIM

Despite the steady growth and price reductions of solar photovoltaic (PV) market in the United States (U.S.), the solar PV market still depends on financial support and incentives due to its high initial investment cost. Therefore, this study aimed to conduct a break-even analysis and impact analysis of residential solar PV systems by state in the U.S., focused on state solar incentives. Three indexes (i.e., net present value, profitability index (PI) and payback period) were used to evaluate the investment value of the residential solar PV systems considering state solar incentives. Furthermore, PI increase ratio was used to analyze the impact of state solar incentives on the economic feasibility of the residential solar PV systems in each state. As a result, it was found that 18 of the 51 target cities have reached the break-even point and seven of the 51 target cities showed great improvement of the economic feasibility of solar PV systems in the U.S. due to excellent state solar incentives. The results of this study can help policy makers to evaluate and compare the economic impacts of the residential solar PV systems by state in the U.S.


2018 ◽  
Vol 67 ◽  
pp. 01024 ◽  
Author(s):  
Riadhi Fairuz ◽  
Eko Adhi Setiawan ◽  
Ikhsan Hernanda

Future electricity tariffs are expected to increase. To overcome this condition, arise the idea how the residential can generate its own electricity by exploiting the potential of solar energy. However, there are some constraints in its implementation due to the difference of the initial cost and sales from solar PV systems in various region of Indonesia. The purpose of this study is to determine the impact of initial cost on the levelized cost of energy from the system. This study uses the calculation of Levelized Cost of Energy (LCoE) and economic feasibility analysis through the calculation of net present value with net metering scheme. Manado is the most optimal city to implement this system. The initial cost will affect to the LCoE, the high initial cost can be covered by the amount of cash flow generated by the system which has huge solar irradiation potentials.


2021 ◽  
Vol 13 (13) ◽  
pp. 7119
Author(s):  
Abbas Rabiee ◽  
Ali Abdali ◽  
Seyed Masoud Mohseni-Bonab ◽  
Mohsen Hazrati

In this paper, a robust scheduling model is proposed for combined heat and power (CHP)-based microgrids using information gap decision theory (IGDT). The microgrid under study consists of conventional power generation as well as boiler units, fuel cells, CHPs, wind turbines, solar PVs, heat storage units, and battery energy storage systems (BESS) as the set of distributed energy resources (DERs). Additionally, a demand response program (DRP) model is considered which has a successful performance in the microgrid hourly scheduling. One of the goals of CHP-based microgrid scheduling is to provide both thermal and electrical energy demands of the consumers. Additionally, the other objective is to benefit from the revenues obtained by selling the surplus electricity to the main grid during the high energy price intervals or purchasing it from the grid when the price of electricity is low at the electric market. Hence, in this paper, a robust scheduling approach is developed with the aim of maximizing the total profit of different energy suppliers in the entire scheduling horizon. The employed IGDT technique aims to handle the impact of uncertainties in the power output of wind and solar PV units on the overall profit.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ramhari Poudyal ◽  
Pavel Loskot ◽  
Ranjan Parajuli

AbstractThis study investigates the techno-economic feasibility of installing a 3-kilowatt-peak (kWp) photovoltaic (PV) system in Kathmandu, Nepal. The study also analyses the importance of scaling up the share of solar energy to contribute to the country's overall energy generation mix. The technical viability of the designed PV system is assessed using PVsyst and Meteonorm simulation software. The performance indicators adopted in our study are the electric energy output, performance ratio, and the economic returns including the levelised cost and the net present value of energy production. The key parameters used in simulations are site-specific meteorological data, solar irradiance, PV capacity factor, and the price of electricity. The achieved PV system efficiency and the performance ratio are 17% and 84%, respectively. The demand–supply gap has been estimated assuming the load profile of a typical household in Kathmandu under the enhanced use of electric appliances. Our results show that the 3-kWp PV system can generate 100% of electricity consumed by a typical residential household in Kathmandu. The calculated levelised cost of energy for the PV system considered is 0.06 $/kWh, and the corresponding rate of investment is 87%. The payback period is estimated to be 8.6 years. The installation of the designed solar PV system could save 10.33 tons of CO2 emission over its lifetime. Overall, the PV systems with 3 kWp capacity appear to be a viable solution to secure a sufficient amount of electricity for most households in Kathmandu city.


2021 ◽  
Vol 3 (1) ◽  
pp. 45-49
Author(s):  
Muhammad Umar Maqbool ◽  
Arslan Dawood Butt ◽  
Abdul Rauf Bhatti ◽  
Yawar Ali Sheikh ◽  
Muhammad Waleed Asif

This work performs a quantitative assessment of the impact of rooftop PV installation on building’s net energy demand using model of roof structure and steady state thermal simulations. For this purpose, roof structure typically used in Faisalabad, Pakistan is modeled with and without the shading effect due to a 395 W commercial rooftop PV setup. The simulated parameters include the impact of PV module’s dimensions, mounting position/angle alongside roof size and ambient conditions on heat load of air-conditioning system to maintain a temperature of 25 °C within building’s top floor. During the daylight hours of July, the heat load added by the roof on average reduces from 150.87 BTU/h/m2 without PV to 118.16 BTU/h/m2 with PV structure. This 20.05% reduction in energy demand has been achieved with July’s maximum daytime solar and infrared irradiances of 792.2 W/m2 and 466 W/m2 recorded at an average ambient temperature of 35.5 °C and wind speed of 2.75 m/s. This study provides valuable data on optimization of roof layer structure during building’s construction in anticipation of PV system installation at a later stage. Also developed techniques/methods to reduce building’s energy budget due to PV installation, can be valuable input for construction industry as well.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4326 ◽  
Author(s):  
Simplice Igor Noubissie Tientcheu ◽  
Shyama P. Chowdhury ◽  
Thomas O. Olwal

The increasing demand to reduce the high consumption of end-use energy in office buildings framed the objective of this work, which was to design an intelligent system management that could be utilized to minimize office buildings’ energy consumption from the national electricity grid. Heating, Ventilation and Air Conditioning (HVAC) and lighting are the two main consumers of electricity in office buildings. Advanced automation and control systems for buildings and their components have been developed by researchers to achieve low energy consumption in office buildings without considering integrating the load consumed and the Photovoltaic system (PV) input to the controller. This study investigated the use of PV to power the HVAC and lighting equipped with a suitable control strategy to improve energy saving within a building, especially in office buildings where there are reports of high misuse of electricity. The intelligent system was modelled using occupant activities, weather condition changes, load consumed and PV energy changes, as input to the control system of lighting and HVAC. The model was verified and tested using specialized simulation tools (Simulink®) and was subsequently used to investigate the impact of an integrated system on energy consumption, based on three scenarios. In addition, the direct impact on reduced energy cost was also analysed. The first scenario was tested in simulation of four offices building in a civil building in South Africa of a single occupant’s activities, weather conditions, temperature and the simulation resulted in savings of HVAC energy and lighting energy of 13% and 29%, respectively. In the second scenario, the four offices were tested in simulation due to the loads’ management plus temperature and occupancy and it resulted in a saving of 20% of HVAC energy and 29% of lighting electrical energy. The third scenario, which tested integrating PV energy (thus, the approach utilized) with the above-mentioned scenarios, resulted in, respectively, 64% and 73% of HVAC energy and lighting electrical energy saved. This saving was greater than that of the first two scenarios. The results of the system developed demonstrated that the loads’ control and the PV integration combined with the occupancy, weather and temperature control, could lead to a significant saving of energy within office buildings.


Author(s):  
K. Agyenim-Boateng ◽  
R. F. Boehm

The promise of large-scale use of renewables such as wind and solar for supplying electrical power is tempered by the sources’ transient behavior and the impact this would have on the operation of the grid. One way of addressing this is through the use of supplemental energy storage. While the technology for the latter has not been proven on a large scale or to be economical at the present time, some assessments of what magnitude is required can be made. In performing this work we have used NREL’s Solar Advisor Model (SAM 2010) with TMY3 solar data to estimate the photovoltaic system power generation. Climatic conditions close to load centers were chosen for the simulations. Then the PV output for varying sizes of arrays were examined and the impact of varying amounts of storage investigated. The storage was characterized by maximum limiting energy and power capacities based on annual hourly peak load, as well as its charging and discharging efficiencies. The simulations were performed using hourly time steps with energy withdrawn from, or input to, storage only after considering base generation and the PV system output in serving the grid load. In this work, we examined the load matching capability of solar PV generation (orientated for maximum summer output) for a sample Southwestern US utility grid load of 2008. Specifically we evaluated the daily and seasonal peak load shifting with employing varying storage capacities. The annual average energy penetration based on the usable solar PV output is also examined under these conditions and at different levels of system flexibility.


Author(s):  
Saleh Al Saadi ◽  
Moncef Krarti

This paper summarizes the findings from a feasibility study of using renewable energy sources in combination with conventional power systems to meet the electrical requirements for an isolated island of Masirah in Oman. The study has been conducted to determine the best hybrid system to generate electrical energy needed for a small community of 500 residential buildings. A series of a simulation analyses have been carried out to evaluate and optimize different distribution technologies including photovolatics, wind and diesel for electrical generation in combination with storage batteries. It was found that the cost of energy could be reduced by as much as 48% compared to the cost for the baseline generation system currently used in the Masirah Island (i.e. diesel-driven generators). In particular, it was found that wind turbines in combination with storage batteries have a great impact in reducing the cost of generating electrical energy for the residential community. Moreover, solar PV panels were found unattractive under the current diesel price rates but could potentially become viable if the diesel prices increase. The paper outlines an optimal design for generating electricity for the community at lowest cost while minimizing carbon emissions.


2020 ◽  
Vol 12 (23) ◽  
pp. 10060
Author(s):  
Ammar Hamoud Ahmad Dehwah ◽  
Muhammad Asif ◽  
Ismail Mohammad Budaiwi ◽  
Adel Alshibani

The application of renewable energy has been an integral part of the sustainability drive in the building sector and solar photovoltaic (PV) is one of the most effective technologies in this respect. The present study aims to investigate the prospects of solar PV in residential buildings in the hot–humid climatic conditions. The study discusses the utilization of building roofs for the application of PV in terms of potential hurdles and utilization factor (UF). Technical performance of PV systems has also been investigated in terms of power output as well as the energy saved as a result of the shading impact of panels for two types of residential units, apartments and villas. Investigation of 70 sample residential buildings reveals the average UF of 0.21 and 0.28 for apartments and villas, respectively. For the case study of apartment and villa residential units, roof UF has been found to be 13% and 15% with a respective PV output of 6079 kWh/year and 6162 kWh/year. Potential PV output at the city level has also been estimated. A sensitivity analysis has been conducted to evaluate the impact of various cost and design parameters on the viability of PV systems.


2007 ◽  
Vol 42 (4) ◽  
pp. 1644-1653 ◽  
Author(s):  
Milorad Bojić ◽  
Milan Despotović ◽  
Jovan Malešević ◽  
Dušan Soković

Sign in / Sign up

Export Citation Format

Share Document