On causality of wave motion in nonlocal theories of elasticity: a Kramers–Kronig relations study

Author(s):  
V. S. Mutnuri ◽  
S. Gopalakrishnan
Keyword(s):  
1996 ◽  
Vol 2 (2) ◽  
pp. 121-126 ◽  
Author(s):  
Masayoshi TSUBOI ◽  
Mitstoshi WATANABE ◽  
Shigeru HIRANO

Author(s):  
V.A. Bulanov ◽  
I.V. Korskov ◽  
A.V. Storozhenko ◽  
S.N. Sosedko

Описано применение акустического зондирования для исследования акустических характеристик верхнего слоя моря с использованием широкополосных остронаправленных инвертированных излучателей,устанавливаемых на дно. В основу метода положен принцип регистрации обратного рассеяния и отраженияот поверхности моря акустических импульсов с различной частотой, позволяющий одновременно измерятьрассеяние и поглощение звука и нелинейный акустический параметр морской воды. Многочастотное зондирование позволяет реализовать акустическую спектроскопию пузырьков в приповерхностных слоях моря,проводить оценку газосодержания и получать данные о спектре поверхностного волнения при различных состояниях моря вплоть до штормовых. Применение остронаправленных высокочастотных пучков ультразвукапозволяет разделить информацию о планктоне и пузырьках и определить с высоким пространственным разрешением структуру пузырьковых облаков, образующихся при обрушении ветровых волн, и структуру планктонных сообществ. Участие планктона в волновом движении в толще морской воды позволяет определитьпараметры внутренних волн спектр и распределение по амплитудам в различное время.This paper represents the application of acoustic probingfor the investigation of acoustical properties of the upperlayer of the sea using broadband narrow-beam invertedtransducers that are mounted on the sea bottom. Thismethod is based on the principle of the recording of thebackscattering and reflections of acoustic pulses of differentfrequencies from the sea surface. That simultaneouslyallows measuring scattering and absorption of the soundand non-linear acoustic parameter of seawater. Multifrequencyprobing allows performing acoustic spectroscopy ofbubbles in the near-surface layer of the sea, estimating gascontent, and obtaining data on the spectrum of the surfacewaves in various states of the sea up to a storm. Utilizationof the high-frequency narrow ultrasound beams allows us toseparate the information about plankton and bubbles and todetermine the structure of bubble clouds, created during thebreaking of wind waves, along with the structure of planktoncommunities with high spatial resolution. The participationof plankton in the wave motion in the seawater columnallows determining parameters of internal waves, such asspectrum and distribution of amplitudes at different times.


1983 ◽  
Vol 18 (1) ◽  
pp. 129-150 ◽  
Author(s):  
Mark K. Watson ◽  
R.R. Hudgins ◽  
P.L. Silveston

Abstract Internal wave motion was studied in a laboratory rectangular, primary clarifier. A photo-extinction device was used as a turbidimeter to measure concentration fluctuations in a small volume within the clarifier as a function of time. The signal from this device was fed to a HP21MX minicomputer and the power spectrum plotted from data records lasting approximately 30 min. Results show large changes of wave amplitude as frequency increases. Two distinct regions occur: one with high amplitudes at frequencies below 0.03 Hz, the second with very small amplitudes appears for frequencies greater than 0.1 Hz. The former is associated with internal waves, the latter with flow-generated turbulence. Depth, velocity in the clarifier and inlet suspended solids influence wave amplitudes and the spectra. A variation with position or orientation of the probe was not detected. Contradictory results were found for the influence of flow contraction baffles on internal wave amplitude.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 204
Author(s):  
Shao-En Chen ◽  
Ray-Yeng Yang ◽  
Guang-Kai Wu ◽  
Chia-Che Wu

In this paper, a piezoelectric wave-energy converter (PWEC), consisting of a buoy, a frequency up-conversion mechanism, and a piezoelectric power-generator component, is developed. The frequency up-conversion mechanism consists of a gear train and geared-linkage mechanism, which converted lower frequencies of wave motion into higher frequencies of mechanical motion. The slider had a six-period displacement compared to the wave motion and was used to excite the piezoelectric power-generation component. Therefore, the operating frequency of the piezoelectric power-generation component was six times the frequency of the wave motion. The developed, flexible piezoelectric composite films of the generator component were used to generate electrical voltage. The piezoelectric film was composed of a copper/nickel foil as the substrate, lead–zirconium–titanium (PZT) material as the piezoelectric layer, and silver material as an upper-electrode layer. The sol-gel process was used to fabricate the PZT layer. The developed PWEC was tested in the wave flume at the Tainan Hydraulics Laboratory, Taiwan (THL). The maximum height and the minimum period were set to 100 mm and 1 s, respectively. The maximum voltage of the measured value was 2.8 V. The root-mean-square (RMS) voltage was 824 mV, which was measured through connection to an external 495 kΩ resistive load. The average electric power was 1.37 μW.


2020 ◽  
Vol 9 (1) ◽  
pp. 27
Author(s):  
Hitoshi Tanaka ◽  
Nguyen Xuan Tinh ◽  
Xiping Yu ◽  
Guangwei Liu

A theoretical and numerical study is carried out to investigate the transformation of the wave boundary layer from non-depth-limited (wave-like boundary layer) to depth-limited one (current-like boundary layer) over a smooth bottom. A long period of wave motion is not sufficient to induce depth-limited properties, although it has simply been assumed in various situations under long waves, such as tsunami and tidal currents. Four criteria are obtained theoretically for recognizing the inception of the depth-limited condition under waves. To validate the theoretical criteria, numerical simulation results using a turbulence model as well as laboratory experiment data are employed. In addition, typical field situations induced by tidal motion and tsunami are discussed to show the usefulness of the proposed criteria.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 822
Author(s):  
Yury Stepanyants ◽  
Izolda Sturova

This paper presents the calculation of the hydrodynamic forces exerted on an oscillating circular cylinder when it moves perpendicular to its axis in infinitely deep water covered by compressed ice. The cylinder can oscillate both horizontally and vertically in the course of its translational motion. In the linear approximation, a solution is found for the steady wave motion generated by the cylinder within the hydrodynamic set of equations for the incompressible ideal fluid. It is shown that, depending on the rate of ice compression, both normal and anomalous dispersion can occur in the system. In the latter case, the group velocity can be opposite to the phase velocity in a certain range of wavenumbers. The dependences of the hydrodynamic loads exerted on the cylinder (the added mass, damping coefficients, wave resistance and lift force) on the translational velocity and frequency of oscillation were studied. It was shown that there is a possibility of the appearance of negative values for the damping coefficients at the relatively big cylinder velocity; then, the wave resistance decreases with the increase in cylinder velocity. The theoretical results were underpinned by the numerical calculations for the real parameters of ice and cylinder motion.


1985 ◽  
Vol 20 (5) ◽  
pp. 230-233
Author(s):  
F Jacobs
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document