Comprehension and hydrogeological conceptualization of aquifer in arid and semi-arid regions using integrated hydrogeological information system: case of the deep aquifer of Zéramdine-Béni Hassen (east-central Tunisia)

2012 ◽  
Vol 6 (7) ◽  
pp. 2655-2671 ◽  
Author(s):  
Fethi Lachaal ◽  
Ammar Mlayah ◽  
Makram Anane ◽  
Mourad Bédir ◽  
Jamila Tarhouni ◽  
...  
2010 ◽  
Vol 3 ◽  
pp. ASWR.S6053
Author(s):  
Jeff Lewis ◽  
Birgitta Liljedahl

This paper discusses the interpretation of surface features that can assist in the evaluation of groundwater resources in semi-arid and arid developing regions. The lack of infrastructure in these areas places serious constraints on borehole drilling, which in turn limits the data which can be obtained directly from the subsurface. Under these conditions, surface indicators may be used to infer useful information about the subsurface, which includes shallow aquifers. This article summarizes those surface indicators which provide useful data in arid and semi-arid regions and provides a review of the literature to assist in their interpretation. Patterns of surface indicators covering a large area may be more effective and less costly for interpreting basic regional hydrogeological conditions than detailed data obtained from a limited number of boreholes. The hydrogeological information which can be obtained by using the methods discussed in this article include the regional flow patterns, an estimate of the depth to groundwater, aquifer geology and estimates of the regional recharge and discharge zones. This data may in turn provide support for subsequent well drilling campaigns, limited environmental assessments, and potable water assessments for humanitarian base camps in developing regions.


2021 ◽  
Author(s):  
Ismail Abd-Elaty ◽  
Martina Zelenakova ◽  
Salvatore Straface ◽  
Zuzana Vranayová ◽  
Mohamed Abu-hashim ◽  
...  

<p>Groundwater is the main source of drinking water in the Nile Delta. Unfortunately, it might be polluted by seepage from polluted streams. This study was carried out to investigate the possible measures  to  protect groundwater  in the Nile delta aquifer using a numerical model (MT3DMS - Mass Transport 3-Dimension Multi-Species). The sources of groundwater contamination were identified and the total dissolved solids (TDS) was taken as an indicator for the contamination. Different strategies were investigated for mitigating the impact of polluted water: i) allocating polluted drains and canals in lower permeability layers; ii)  installing cut-off walls in the polluted drains, and finally, iii) using lining materials in polluted drains and canals. Results indicated these measures effective to mitigate the groundwater pollution. In particular, the cut-off wall was effective for contamination reduction in shallow aquifers, whereas it had no effect in the deep aquifer, while lining materials in polluted drains and canals were able to prevent contamination and to protect the freshwater in the aquifers.  It is worth mentioning that this study was partially supported by a bilateral project between ASRT (Egypt) and CNR (Italy).</p><p> </p><p> </p>


2012 ◽  
Vol 7 (No. 1) ◽  
pp. 36-44 ◽  
Author(s):  
S. Kanzari ◽  
M. Hachicha ◽  
R. Bouhlila ◽  
J. Battle-Sales

Arid and semi-arid regions face the risk of soils and aquifers salinization. Rainy events are rare which is characteristic of these regions. They play a significant role in the leaching of salts from topsoil to deeper layers, which increases the risk of aquifers salinization. For this reason, a plot was selected in the semi-arid region of Bou Hajla (Central Tunisia). The simulation of water and salts dynamics was carried out by Hydrus-1D. Model calibration was realised on a flood irrigation experiment during 10 days and in a depth of 4 m. The hydrodynamic parameters were determined by inverse modelling. Model validation was performed successfully during 577 days. The simulation of water and salts dynamics has allowed the analysis of two scenarios: (i) the effect of a very rainy event (> 50mm/day) on the dynamics of salts. This type of event allows leaching of the accumulated salts in the topsoil which promotes their burial in the depth; (ii) the long-term evolution of the saline profile in 20 years showed the cyclical nature of salts leaching in the topsoil, the permanent accumulation of salts in the depth of around 2 m, and a continuous leaching in the deeper layers (around 4 m), which may increase groundwater contamination risk.


2019 ◽  
Vol 27 (5) ◽  
pp. 1645-1660 ◽  
Author(s):  
Hamza Jerbi ◽  
Mohamed Hamdi ◽  
Manel Snoussi ◽  
Maroua Ben Abdelmalek ◽  
Hadhemi Jnoub ◽  
...  

2020 ◽  
Vol 76 (11) ◽  
Author(s):  
Senni Rachida ◽  
De Belair Gerard ◽  
Abdelkrim Hacene
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document