Implementation of a 3-D groundwater flow model in a semi-arid region using MODFLOW and GIS tools: The Zéramdine–Béni Hassen Miocene aquifer system (east-central Tunisia)

2012 ◽  
Vol 48 ◽  
pp. 187-198 ◽  
Author(s):  
Fethi Lachaal ◽  
Ammar Mlayah ◽  
Mourad Bédir ◽  
Jamila Tarhouni ◽  
Christian Leduc
2020 ◽  
Author(s):  
Yosuke Miura ◽  
Kei Yoshimura

<p>  Groundwater is one of the important water resources in the world and Groundwater flow is linked with surface water strongly. Many studies on groundwater are conducted in a local scale or focused on affect-ing surface water in a global scale. In current Earth System Model, fixed and constant one-dimensional vertical grid is used in unsaturated zone. In real world, the thickness of unsatu-rated zone depends on the climate and it is considered that there are limitations of runoff process expression especially in humid mountainous area. In this study, we developed three-dimensional groundwater flow model as ESM which can represent the variably saturated flow and groundwa-ter storativity. Since, this model is eventually coupled with Land Surface Model, it is possible to track the underground water flow using boundary conditions of recharge and surface water level.</p><p>  We verified accuracy of the code using one & two-dimensional infiltration problem, three-dimensional groundwater pumping problem, and hillslope problem. Our model was com-pared with other researchers results, experimental data, analytical solutions. In consequence, our model was able to get accurate results. Subsequently, we conducted validation in Central valley, California, USA. The reason of chose this region is that this region is a semi-arid region, ground-water is used for irrigation and well pumping data is accessible. Over the world, groundwater use is more important in arid or semi-arid region than in humid area, and also highly utilized as agri-cultural water. Central valley has representativeness of groundwater use. In addition, the famous groundwater model, MODFLOW, was used to evaluate water resource management in this region. As well as MODFLOW, we calibrated hydraulic conductivity with 24 observation sites during 1961 - 2003 to validate. 156 observation points excluded 24 calibration points were used as vali-dation in same period. In the near future, we will confirm the difference between one-dimension and three dimensions setting of the unsaturated zone with respect to runoff process.</p>


Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 23
Author(s):  
Ioannis Gkiougkis ◽  
Christos Pouliaris ◽  
Fotios-Konstantinos Pliakas ◽  
Ioannis Diamantis ◽  
Andreas Kallioras

In this paper, the development of the conceptual and groundwater flow model for the coastal aquifer system of the alluvial plain of River Nestos (N. Greece), that suffers from seawater intrusion due to over-pumping for irrigation, is analyzed. The study area is a typical semi-arid hydrogeologic environment, composed of a multi-layer granular aquifers that covers the eastern coastal delta system of R. Nestos. This study demonstrates the results of a series of field measurements (such as geophysical surveys, hydrochemical and isotopical measurements, hydro-meteorological data, land use, irrigation schemes) that were conducted during the period 2009 to 2014. The synthesis of the above resulted in the development of the conceptual model for this aquifer system, that formed the basis for the application of the mathematical model for simulating groundwater flow. The mathematical modeling was achieved using the finite difference method after the application of the USGS code MODFLOW-2005.


2014 ◽  
Vol 5 (3) ◽  
pp. 457-471 ◽  
Author(s):  
M. Mastrocicco ◽  
N. Colombani ◽  
A. Gargini

A modelling study on a multi-layered confined/unconfined alluvial aquifer system was performed to quantify surface water/groundwater interactions. The calibrated groundwater flow model was used to forecast climate change impacts by implementing the results of a downscaled A1B model ensemble for the Po river valley. The modelled area is located in the north-western portion of the Ferrara Province (Northern Italy), along the eastern bank of the Po river. The modelling procedure started with a large scale steady state model followed by a transient flow model for the central portion of the domain, where a telescopic mesh refinement was applied. The calibration performance of both models was satisfactory, in both drought and flooding conditions. Subsequently, forecasted rainfall, evapotranspiration and Po river stage at 2050, were implemented in the calibrated large scale groundwater flow model and their uncertainties discussed. Three scenarios were run on the large scale model: the first simulating mean hydrological conditions and the other two simulating one standard deviation above and below the mean hydrological conditions. The forecasted variations in groundwater/Po river fluxes are relevant, with a general increase of groundwater levels due to local conditions, although there are large uncertainties in the predicted variables.


2021 ◽  
Author(s):  
Emmanouil Varouchakis ◽  
Leonardo Azevedo ◽  
João L. Pereira ◽  
Ioannis Trichakis ◽  
George P. Karatzas ◽  
...  

<p>Groundwater resources in Mediterranean coastal aquifers are under threat due to overexploitation and climate change impacts, resulting in saltwater intrusion. This situation is deteriorated by the absence of sustainable groundwater resources management plans. Efficient management and monitoring of groundwater systems requires interpreting all sources of available data. This work aims at the development of a set of plausible 3D geological models combining 2D geophysical profiles, spatial data analytics and geostatistical simulation techniques. The resulting set of models represents possible scenarios of the structure of the coastal aquifer system under investigation. Inverted resistivity profiles, along with borehole data, are explored using spatial data science techniques to identify regions associated with higher uncertainty. Relevant parts of the profiles will be used to generate 3D models after detailed Anisotropy and variogram analysis. Multidimensional statistical techniques are then used to select representative models of the true subsurface while exploring the uncertainty space. The resulting models will help to identify primary gaps in existing knowledge about the groundwater system and to optimize the groundwater monitoring network. A comparison with a numerical groundwater flow model will identify similarities and differences and it will be used to develop a typical hydrogeological model, which will aid the management and monitoring of the area's groundwater resources. This work will help the development of a reliable groundwater flow model to investigate future groundwater level fluctuations at the study area under climate change scenarios.</p><p> </p><p>This work was developed under the scope of the InTheMED project. InTheMED is part of the PRIMA programme supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 1923.</p>


Sign in / Sign up

Export Citation Format

Share Document