Amelioration of soil acidity, Olsen-P, and phosphatase activity by manure- and peat-derived biochars in different acidic soils

2018 ◽  
Vol 11 (11) ◽  
Author(s):  
Muhammad Aqeel Kamran ◽  
Jun Jiang ◽  
Jiu-yu Li ◽  
Ren-yong Shi ◽  
Khalid Mehmood ◽  
...  
2017 ◽  
Vol 48 (17) ◽  
pp. 2049-2060
Author(s):  
Xinghua Shao ◽  
Jiangzhong Zhang ◽  
Lianjin Guo

2019 ◽  
pp. 220-230
Author(s):  
Yuri Shcatula

Agricultural production is one of the factors for the deterioration of the agro-ecological state of the environment and the anthropogenic-man-made changes in all its components. After analyzing the results of the research, it can be argued that the soils of the Kalinovsky region are characterized as medium-provided with humus, an indicator in the range of 2.21-4.01%. The content in the topsoil of mobile phosphorus is 10.0 mg/100 g of soil, mobile potassium 8.3 mg./100 g of soil related to the well-being, salt pH is 5.9. To carry out reclamation measures and reduce the areas of soil acidity to neutral and close to them values, it is necessary to have highly acidic soils with pH of salt. 4.5 and Нr 5.4 mg.eq/100 g produce lime with a rate of 5.4 t/ha; average oxygen with pH of sol. 4.8 and Нr 4.7 mg.eq/100 g to lime with the norm of lime 4.7 t/ha and slightly acid with pH of salt 5.4 and Hr 3.1 mg. Eq/100 g – 3.1 t/ha.


2021 ◽  
Vol 23 (3) ◽  
pp. 297-303
Author(s):  
MANOJ KUMAR ◽  

In order to examine the current status of soil acidity in Meghalaya, representative soil samples (n= 497) were collected (during 2015-2016) from across the state and analyzed for soil acidity and associated parameters. Averaged across the samples, pH of the soils was found to be very strongly acidic (4.94). Nearly 20 % of the soils had pH below 4.50, 59% below pH 5.0 and 80% below pH 5.50. Only 3.4% of the samples recorded pH more than 6.0. East Khasi Hills District had the maximum percentage (95.1%) of strongly acidic soils (pH ≤ 5.50) while Garo Hills had the least (50.2%). All other districts recorded more than 85% of the strongly acidic soils. Average exchangeable acidity, exchangeable Al and effective CEC were found to be 1.60, 1.27 and 3.86 meq/100g soil, respectively. Mean base saturation was recorded below 60%. Aluminium saturation (percentage of effective CEC being occupied by exch. Al) ranged from 1.5 to 79.7% with its mean value being as high as 33%. Principal component analysis provided three PCs with Eigen values >1 and together they explained 83.2 % of the variance in total dataset. The soil acidity in Meghalaya is on rise, with 80.2% of its soils being strongly acidic (pH ≤ 5.50) in contrast to the previous reports of 53% soils being strongly acidic. This calls for widespread adoption of soil acidity ameliorative measures in agriculture of Meghalaya, Northeast India.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1803
Author(s):  
Prisca Divra Johan ◽  
Osumanu Haruna Ahmed ◽  
Ali Maru ◽  
Latifah Omar ◽  
Nur Aainaa Hasbullah

Soil acidity is an important soil factor affecting crop growth and development. This ultimately limits crop productivity and the profitability of farmers. Soil acidity increases the toxicity of Al, Fe, H, and Mn. The abundance of Al and Fe ions in weathered soils has been implicated in P fixation. To date, limited research has attempted to unravel the use of charcoal with the incorporation of sago (Metroxylon sagu) bark ash to reduce P fixation. Therefore, an incubation study was conducted in the Soil Science Laboratory of Universiti Putra Malaysia Bintulu Sarawak Campus, Malaysia for 90 days to determine the optimum amounts of charcoal and sago bark ash that could be used to improve the P availability of a mineral acidic soil. Charcoal and sago bark ash rates varied by 25%, whereas Egypt rock phosphate (ERP) rate was fixed at 100% of the recommendation rate. Soil available P was determined using the Mehlich 1 method, soil total P was extracted using the aqua regia method, and inorganic P was fractionated using the sequential extraction method based on its relative solubility. Other selected soil chemical properties were determined using standard procedures. The results reveal that co-application of charcoal, regardless of rate, substantially increased soil total carbon. In addition, application of 75% sago bark ash increased soil pH and at the same time, it reduced exchangeable acidity, Al3+, and Fe2+. Additionally, amending acidic soils with both charcoal and sago bark ash positively enhanced the availability of K, Ca, Mg, and Na. Although there was no significant improvement in soil Mehlich-P with or without charcoal and sago bark ash, the application of these amendments altered inorganic P fractions in the soil. Calcium-bound phosphorus was more pronounced compared with Al-P and Fe-P for the soil with ERP, charcoal, and sago bark ash. The findings of this study suggest that as soil pH decreases, P fixation by Al and Fe can be minimised using charcoal and sago bark ash. This is because of the alkalinity of sago bark ash and the high affinity of charcoal for Al and Fe ions to impede Al and Fe hydrolysis to produce more H+. Thus, the optimum rates of charcoal and sago bark ash to increase P availability are 75% sago bark ash with 75%, 50%, and 25% charcoal because these rates significantly reduced soil exchangeable acidity, Al3+, and Fe2+.


2002 ◽  
Vol 82 (2) ◽  
pp. 227-238 ◽  
Author(s):  
Joann K Whalen ◽  
Chi Chang ◽  
George W Clayton

Crop production on acid soils can be improved greatly by adjusting the pH to near neutrality. Although soil acidity is commonly corrected by liming, there is evidence that animal manure amendments can increase the pH of acid soils. Fresh cattle manure and agricultural lime were compared for their effects on soil acidity and the production of canola (Brassica napus L.) and wheat (Triticum aestivum L.) in a greenhouse study. Canola and wheat yield, the nutrient content of grain and straw, and selected soil properties were determined on a Gray Luvisol (pH 4.8) from the Peace Region of Alberta. Soil pH increased with lime and manure applications, and canola and wheat yields were higher in limed and manure-amended soils than unfertilized, unlimed soils. Macronutrient uptake by canola and wheat was generally improved by liming and manure applications, and micronutrient uptake was related to the effects of lime and manure on soil pH. An economic analysis compared the costs of using cattle manure and lime to increase soil pH to 6.0. The costs of applying lime and fresh cattle manure to increase soil pH were compared, based on the fees for purchasing and applying lime or loading, hauling and applying manure. The nutrient value of manure was calculated based on the quantities of plant-available N, P and K in fresh manure. At distances less than 40 km, it is economical to substitute fresh cattle manure for agricultural lime to increase soil pH of acidic soils. However, good manure management practices should be followed to minimize the risk of nutrient transport and environmental pollution from agricultural land amended with cattle manure. Key words: Agricultural economics, canola production, cattle manure, lime, soil pH, wheat prodution


2014 ◽  
Vol 13 (3) ◽  
pp. 206-212 ◽  
Author(s):  
Suwannee Laenoi ◽  
Nattinee Phattarakul ◽  
Sansanee Jamjod ◽  
Narit Yimyam ◽  
Bernard Dell ◽  
...  

Local upland rice germplasm is an invaluable resource for farmers who grow rice on acidic soils without flooding that benefits wetland rice. In this study, we evaluated the adaptation to soil acidity in common local upland rice varieties from an area with acidic soil in Thailand. Tolerance to hydrogen and aluminium (Al) toxicity was determined by measuring root growth, plant dry weight and phosphorus (P) uptake in aerated solution culture without the supplementation of Al (0 mg/l) at pH 7 and 4 and with the supplementation of 10, 20 and 30 mg Al/l at pH 4. The root growth of upland rice plants grown from farmers' seed was depressed less by Al than that of common wetland rice varieties. Pure-line genotypes of upland rice varieties were differentiated into several classes of Al tolerance, with frequency distribution of the classes that sometimes differed between the accessions of the same varieties. The effect of Al tolerance on root length was closely correlated with depression by Al in root dry weight and whole-plant P content. A source for adaptation to soil acidity for exploitation in the genetic improvement of aerobic and rainfed rice is clearly found among local upland rice varieties grown on acidic soils. However, the variation in tolerance to soil acidity within and among the seed lots of the same varieties maintained by individual farmers as well as among the varieties needs to be taken into consideration.


Fuel ◽  
2010 ◽  
Vol 89 (11) ◽  
pp. 3498-3504 ◽  
Author(s):  
V. Manoharan ◽  
I.A.M. Yunusa ◽  
P. Loganathan ◽  
R. Lawrie ◽  
C.G. Skilbeck ◽  
...  

Author(s):  
Garrison Sposito

A soil is acidic if the pH value of the soil solution is less than 7.0. This condition is met in many soils where rainfall exceeds evapotranspiration, including Alfisols, Histosols, Inceptisols, Oxisols, Spodosols, and Ultisols—almost half of the ice-free land area worldwide. Soils of the humid tropics offer examples of acidic soils (Ultisols and Oxisols), as do soils of forested regions in the temperate zones of Earth (Alfisols, Histosols, Inceptisols, and Spodosols). Soils in peat-producing wetlands and those influenced strongly by oxidation reactions, such as rice-producing uplands, can be mentioned as examples in which the biota play a direct role in acidification. The phenomena that produce a given proton concentration in the soil solution to render it acidic are complex and interrelated. Those pertaining to sources and sinks for protons are shown in Fig. 11.1, which is a special case of Fig. 1.4 with “free cation or anion” in the center of the latter figure now interpreted as H+. In addition to the biogeochemical determinants of soil acidity, the field-scale transport processes wetfall (rain, snow, throughfall), dryfall (deposited solid particles), and interflow (lateral movement of soil water beneath the land surface down hill slopes) carry protons into a soil solution from external sources. Their existence and that of proton-exporting processes, such as volatilization and erosion, underscore the fact that the soil solution is an open natural water system subject to anthropogenic inputs that may dominate the development of soil acidity. Industrial effluents, such as sulfur and nitrogen oxide gases or mining waste waters, that produce acidic deposition or infiltration, and nitrog-enous fertilizers, the transformation and transport of which produce acidic soil conditions, are examples of anthropogenic inputs. Despite all this complexity, proton cycling in acidic soils at field scales has been quantified well enough to allow some general conclusions to be drawn. Acidic deposition, production of CO2(g) and humus, plus proton biocycling, all serve to increase soil solution acidity, whereas proton adsorption and mineral weathering serve to decrease it.


Sign in / Sign up

Export Citation Format

Share Document