scholarly journals Retraction Note to: Deoxynivalenol-induced alterations in the redox status of HepG2 cells: identification of lipid hydroperoxides, the role of Nrf2-Keap1 signaling, and protective effects of zinc

Author(s):  
Wageh Sobhy Darwish ◽  
Zhen Chen ◽  
Yonghan Li ◽  
Hui Tan ◽  
Hitoshi Chiba ◽  
...  
2020 ◽  
Vol 36 (3) ◽  
pp. 287-299
Author(s):  
Wageh Sobhy Darwish ◽  
Zhen Chen ◽  
Yonghan Li ◽  
Hui Tan ◽  
Hitoshi Chiba ◽  
...  

2020 ◽  
Vol 36 (3) ◽  
pp. 301-301
Author(s):  
Wageh Sobhy Darwish ◽  
Zhen Chen ◽  
Yonghan Li ◽  
Hui Tan ◽  
Hitoshi Chiba ◽  
...  

2020 ◽  
Author(s):  
Abazar Ghorbani ◽  
Leila Pishkar ◽  
Nasim Roudbari ◽  
Necla Pehlivan ◽  
Chu Wu

Abstract Background: Plants do not always have the genetic capacity to tolerate high quantities of (As) which does not only arrest the plant growth, but commit potential health risks by dietary bioaccumulation. However, the interplay between the tomato plants and As-NO driven molecular cell dynamics are obscure. Hence, seedlings were treated with As (10 mg/L) alone or in combination with 100 µM sodium nitroprusside (SNP, NO donor) and 200 µM 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO, NO scavenger).Results: SNP immobilized the As in the roots and reduced the shoot translocation by up-regulating the transcriptional expression of the PCS, GSH1, MT2 and ABC1. SNP further restored the growth retardation by modulating the chlorophyll and proline metabolism, increasing NO accumulation and stomatal conductance along with a clear crosstalk between the activity of antioxidants as well as glyoxalase I and II leading endogenous H2O2 and MG decrease.Conclusion: Higher PCs and glutathione accumulation helped to protect photosynthetic apparatus, however, cPTIO reversed the protective effects of SNP, authenticating the role of NO in the As toxicity alleviation.


2020 ◽  
Vol 94 ◽  
Author(s):  
D.I. Elgendy ◽  
A.A. Othman ◽  
M.A. Hasby Saad ◽  
N.A. Soliman ◽  
S.E. Mwafy

Abstract Trichinellosis is a serious food-borne zoonotic infection of cosmopolitan distribution. Currently, treatment for trichinellosis is far from ideal. Given the important role of oxidative stress and immune-mediated inflammation in the pathogenesis of trichinellosis, this study was designed to evaluate the possible protective effects of resveratrol (RSV) during the intestinal and muscular phases of Trichinella spiralis infection in mice. The oral administration of RSV at a dose of 20 mg/kg once daily for two weeks resulted in significant reductions in both adult and larval counts; significant improvements in the redox status of the small intestine and muscles; a significant reduction in interleukin 4, pentraxin 3 and vascular endothelial growth factor expression; and the mitigation of intestinal and muscular inflammation. In conclusion, this study identifies RSV as a promising agent for the treatment of experimental trichinellosis, and more studies in experimental animals and humans are worth consideration.


2019 ◽  
Vol 7 (4) ◽  
pp. 333-341
Author(s):  
Juan Potte ◽  
Victor Hinojoza

Atherosclerosis is characterized by oxidative damage, which affects lipoproteins, the walls of blood vessels, and subcellular membranes. The oxidation of low-density lipoproteins (LDLs) plays an important role in the development of atherosclerosis. Curcumin is a component of turmeric, a spice used in many types of cooking and gives the yellow color to turmeric, was first isolated almost two centuries ago, and its structure as diferuloylmethane was determined in 1910. Since the time of Ayurveda (1900 Bc) numerous therapeutic activities have been assigned to turmeric for a wide variety of diseases and conditions, including those of the skin, pulmonary, and gastrointestinal systems, aches, pains, wounds, sprains, and liver disorders. Curcumin has been known that turmeric exhibits anti-inflammatory activity, this activity of turmeric is due to curcumin, a diferuloylmethane, and has been shown to regulate numerous transcription factors, cytokines, protein kinases, adhesion molecules, redox status and enzymes that have been linked to inflammation. The process of inflammation has been shown to play a major role in most chronic illnesses, like atherosclerosis. The researchers showed that curcumin exhibited protective effects as indicated by inhibition of lipoperoxidation of subcellular membranes. Oral curcumin inhibits LDL oxidation and has hypocholesterolemic effects in rabbits with experimental atherosclerosis. In the current review, we provide evidence for the potential role of curcumin in the prevention and treatment of atherosclerosis and pharmacological safety and negligible cost.


Diabetes ◽  
1997 ◽  
Vol 46 (3) ◽  
pp. 354-362 ◽  
Author(s):  
K. Matsuda ◽  
E. Araki ◽  
R. Yoshimura ◽  
K. Tsuruzoe ◽  
N. Furukawa ◽  
...  

2018 ◽  
Vol 24 (4) ◽  
pp. 427-441 ◽  
Author(s):  
Marija Vavlukis ◽  
Sasko Kedev

Background: Diabetic dyslipidemia has specifics that differ from dyslipidemia in patients without diabetes, which contributes to accelerated atherosclerosis equally as dysglycemia. The aim of this study was to deduce the interdependence of diabetic dyslipidemia and cardiovascular diseases (CVD), therapeutic strategies and the risk of diabetes development with statin therapy. Method: We conducted a literature review of English articles through PubMed, PubMed Central and Cochrane, on the role of diabetic dyslipidemia in atherosclerosis, the antilipemic treatment with statins, and the role of statin therapy in newly developed diabetes, by using key words: atherosclerosis, diabetes mellitus, diabetic dyslipidemia, CVD, statins, nicotinic acid, fibrates, PCSK9 inhibitors. Results: hyperglycemia and dyslipidemia cannot be treated separately in patients with diabetes. It seems that dyslipidemia plays one of the key roles in the development of atherosclerosis. High levels of TG, decreased levels of HDL-C and increased levels of small dense LDL- C particles in the systemic circulation are the most specific attributes of diabetic dyslipidemia, all of which originate from an inflated flux of free fatty acids occurring due to the preceding resistance to insulin, and exacerbated by elevated levels of inflammatory adipokines. Statins are a fundamental treatment for diabetic dyslipidemia, both for dyslipidemia and for CVD prevention. The use of statin treatment with high intensity is endorsed for all diabetes-and-CVD patients, while a moderate - intensity treatment can be applied to patients with diabetes, having additional risk factors for CVD. Statins alone are thought to possess a small, although of statistical significance, risk of incident diabetes, outweighed by their benefits. Conclusion: As important as hyperglycemia and glycoregulation are in CVD development in patients with diabetes, diabetic dyslipidemia plays an even more important role. Statins remain the cornerstone of antilipemic treatment in diabetic dyslipidemia, and their protective effects in CVD progression overcome the risk of statin- associated incident diabetes.


2020 ◽  
Vol 16 (3) ◽  
pp. 265-283
Author(s):  
Kyriaki Hatziagapiou ◽  
George I. Lambrou

Background: Reactive oxygen species and reactive nitrogen species, which are collectively called reactive oxygen nitrogen species, are inevitable by-products of cellular metabolic redox reactions, such as oxidative phosphorylation in the mitochondrial respiratory chain, phagocytosis, reactions of biotransformation of exogenous and endogenous substrata in endoplasmic reticulum, eicosanoid synthesis, and redox reactions in the presence of metal with variable valence. Among medicinal plants there is a growing interest in Crocus sativus L. It is a perennial, stemless herb, belonging to Iridaceae family, cultivated in various countries such as Greece, Italy, Spain, Israel, Morocco, Turkey, Iran, India, China, Egypt and Mexico. Objective: The present study aims to address the anti-toxicant role of Crocus sativus L. in the cases of toxin and drug toxification. Materials and Methods: An electronic literature search was conducted by the two authors from 1993 to August 2017. Original articles and systematic reviews (with or without meta-analysis), as well as case reports were selected. Titles and abstracts of papers were screened by a third reviewer to determine whether they met the eligibility criteria, and full texts of the selected articles were retrieved. Results: The authors focused on literature concerning the role of Crocus Sativus L. as an anti-toxicant agent. Literature review showed that Saffron is a potent anti-toxicant agent with a plethora of applications ranging from anti-oxidant properties, to chemotherapy protective effects. Conclusion: Literature findings represented in current review herald promising results for using Crocus Sativus L. and/or its active constituents as anti-toxicant, chemotherapy-induced protection and toxin protection.


2020 ◽  
Vol 21 (2) ◽  
pp. 237-245 ◽  
Author(s):  
Mohamed A. Ragheb ◽  
Marwa H. Soliman ◽  
Emad M. Elzayat ◽  
Mervat S. Mohamed ◽  
Nada El-Ekiaby ◽  
...  

Background: Doxorubicin (DOX) is the most common drugs used in cancer therapy, including Hepatocellular Carcinoma (HCC). Drug resistance, is one of chemotherapy’s significant problems. Emerging studies have shown that microRNAs (miRNAs) could participate in regulating this mechanism. Nevertheless, the impact of miRNAs on HCC chemoresistance is still enigmatic. Objective: Investigating the role of miR-520c-3p in enhancement of anti-tumor effect of DOX against HepG2 cells. Methods: Expression profile for liver related miRNAs (384 miRNAs) has been analyzed on HepG2 cells treated with DOX using qRT-PCR. miR-520c-3p, the most deregulated miRNA, was selected for combination treatment with DOX. Expression level for LEF1, CDK2, CDH1, VIM, Mcl-1 and TP53 was evaluated in miR-520c-3p transfected cells. Cell viability, colony formation, wound healing as well as apoptosis assays have been demonstrated. Furthermore, Mcl-1 protein level was measured using western blot technique. Results: The present data indicated that miR-520c-3p overexpression could render HepG2 cells chemo-sensitive to DOX through enhancing its suppressive effects on proliferation, migration, and induction of apoptosis. The suppressive effect of miR-520c-3p involved altering the expression levels of some key regulators of cell cycle, proliferation, migration and apoptosis including LEF1, CDK2, CDH1, VIM, Mcl-1 and TP53. Interestingly, Mcl-1 was found to be one of the potential targets of miR-520c-3p, and its protein expression level was down-regulated upon miR-520c-3p overexpression. Conclusion: Our data referred to the tumor suppressor function of miR-520c-3p that could modulate chemosensitivity of HepG2 cells toward DOX treatment, providing a promising therapeutic strategy in HCC.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2560
Author(s):  
Luis G. Guijarro ◽  
Patricia Sanmartin-Salinas ◽  
Eva Pérez-Cuevas ◽  
M. Val Toledo-Lobo ◽  
Jorge Monserrat ◽  
...  

New evidence suggests that insulin receptor substrate 4 (IRS-4) may play an important role in the promotion of tumoral growth. In this investigation, we have evaluated the role of IRS-4 in a pilot study performed on patients with liver cancer. We used immunohistochemistry to examine IRS-4 expression in biopsies of tumoral tissue from a cohort of 31 patient suffering of hepatocellular carcinoma (HCC). We simultaneously analyzed the expression of the cancer biomarkers PCNA, Ki-67, and pH3 in the same tissue samples. The in vitro analysis was conducted by studying the behavior of HepG2 cells following IRS-4 overexpression/silencing. IRS-4 was expressed mainly in the nuclei of tumoral cells from HCC patients. In contrast, in healthy cells involved in portal triads, canaliculi, and parenchymal tissue, IRS-4 was observed in the cytosol and the membrane. Nuclear IRS-4 in the tumoral region was found in 69.9 ± 3.2%, whereas in the surrounding healthy hepatocytes, nuclear IRS-4 was rarely observed. The percentage of tumoral cells that exhibited nuclear PCNA and Ki-67 were 52.1 ± 7%, 6.1 ± 1.1% and 1.3 ± 0.2%, respectively. Furthermore, we observed a significant positive linear correlation between nuclear IRS-4 and PCNA (r = 0.989; p < 0.001). However, when we correlated the nuclear expression of IRS-4 and Ki-67, we observed a significant positive curvilinear correlation (r = 0.758; p < 0.010). This allowed us to define two populations, (IRS-4 + Ki-67 ≤ 69%) and (IRS-4 + Ki-67 > 70%). The population with lower levels of IRS-4 and Ki-67 had a higher risk of suffering from multifocal liver cancer (OR = 16.66; CI = 1.68–164.8 (95%); p < 0.05). Immunoblot analyses showed that IRS-4 in normal human liver biopsies was lower than in HepG2, Huh7, and Chang cells. Treatment of HepG2 with IGF-1 and EGF induced IRS-4 translocation to the nucleus. Regulation of IRS-4 levels via HepG2 transfection experiments revealed the protein’s role in proliferation, cell migration, and cell-collagen adhesion. Nuclear IRS-4 is increased in the tumoral region of HCC. IRS-4 and Ki-67 levels are significantly correlated with the presence of multifocal HCC. Moreover, upregulation of IRS-4 in HepG2 cells induced proliferation by a β-catenin/Rb/cyclin D mechanism, whereas downregulation of IRS-4 caused a loss in cellular polarity and in its adherence to collagen as well as a gain in migratory and invasive capacities, probably via an integrin α2 and focal adhesion cascade (FAK) mechanism.


Sign in / Sign up

Export Citation Format

Share Document