Deterioration inference according to mechanical characteristics analysis of ACSR due to an artificial flame and a forest fire

Rare Metals ◽  
2011 ◽  
Vol 30 (S1) ◽  
pp. 305-310
Author(s):  
Dae-Dong Lee ◽  
Jae-Myung Shim ◽  
Keun-Seok Park ◽  
Young-Dal Kim
2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
Baoquan Kou ◽  
Yiheng Zhou ◽  
Xiaobao Yang ◽  
Feng Xing ◽  
He Zhang

In this paper, we describe a flat-type vertical-gap passive magnetic levitation vibration isolator (FVPMLVI) for active vibration isolation system (AVIS). A dual-stator scheme and a special stator magnet array are adopted in the proposed FVPMLVI, which has the effect of decreasing its natural frequency, and this enhances the vibration isolation capability of the FVPMLVI. The structure, operating principle, analytical model, and electromagnetic and mechanical characteristics of the FVPMLVI are investigated. The relationship between the force characteristics (levitation force, horizontal force, force ripple, and force density) and major structural parameters (width and thickness of stator and mover magnets) is analyzed by finite element method. The experiment result is in good agreement with the theoretical analysis.


2020 ◽  
Vol 20 (10) ◽  
pp. 2040037
Author(s):  
YAN-LIN WANG ◽  
KE-YI WANG ◽  
ZI-XING ZHANG ◽  
LIANG-LIANG CHEN ◽  
ZONG-JUN MO

Cable-driven parallel robots (CDPR) have been well used in the rehabilitation field. However, the cables can provide the tension in a single direction, there is a pseudo-drag phenomenon of the cables in the CDPR, which will have a great impact on the safety of patients. Therefore, the novelty of this work is that a bionic muscle cable is used to replace the ordinary cable in the CDPR, which can solve the pseudo-drag phenomenon of the cables in the CDPR and improve the safety performance of the rehabilitation robot. The cable-driven lower limb rehabilitation robot with bionic muscle cables is called as the bionic muscle cable-driven lower limb rehabilitation robot (BMCDLR). The motion planning of the rigid branch chain of the BMCDLR is studied, and the dynamics and system stiffness of the BMCDLR are analyzed based on the man–machine model in this paper. The influence of the parameters of the elastic elements in the bionic muscle cables on the mechanical characteristics of the BMCDLR system was analyzed by using simulation experiments. The research results can provide a reference basis for research on the safety evaluation and control methods of the BMCDLR system.


Petroleum ◽  
2017 ◽  
Vol 3 (4) ◽  
pp. 483-488 ◽  
Author(s):  
Hongxia Sun ◽  
Yujie Zhao ◽  
Jun Yao

2010 ◽  
Vol 452-453 ◽  
pp. 721-724
Author(s):  
Gum Sung Ryu ◽  
Hyun Jin Kang ◽  
Su Tae Kang ◽  
Gyung Taek Koh ◽  
Jang Hwa Lee

Recently, research on alkali-activated concrete that does not use cement as binder has been actively conducted. This alkali-activated concrete is a cement zero concrete which, instead of cement, is activated by alkali solution using fly ash known to be rich of Si and Al and enables to reduce effectively the emission of CO2 gas. This paper presents a basic study for the manufacture of cementless concrete using 100% of fly ash. To that goal, the mechanical characteristics of cementless concrete is evaluated according to the age and the variation of the molar concentration of the alkali activator with focus on the identification of the reaction mechanism. The experimental results show that larger molar concentration elutes larger quantities of Si4+ and Al3+. Specifically, approximately twice larger quantities of Si4+ and Al3+ were eluted for molar concentrations of 9M and 12M than 6M. The formation of gel at the surface of fly ash appeared to be caused by the stronger activation of fly ash in higher alkali environment. The resulting compressive strengths per age indicated that the strength of concrete could be controlled according to the molar concentration of NaOH. Moreover, results also demonstrated that a molar concentration of 9M for NaOH seems to be appropriate to secure a strength superior to 40MPa as the reference for high strength concrete in ordinary concrete.


Author(s):  

The ASONIKA-V software package, intended for the mechanical characteristics analysis of the cabinets, racks and blocks of radio-electronic equipment installed on vibration isolators is consi dered. Account of harmonic vibration, random vibration, shock loads, linear acceleration, acoustic noise is provided. The issues of identification, parametric and structural optimization are considered. Keywords radio engineering device; mechanical characteristics; identification; math modeling; vibration isolator; optimization


2021 ◽  
pp. 1-1
Author(s):  
Tae-Kyoung Bang ◽  
Kyung-Hun Shin ◽  
Jeong-In Lee ◽  
Hoon-Ki Lee ◽  
Han-Wook Cho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document