X-ray diffraction investigation of amorphous calcium phosphate and hydroxyapatite under ultra-high hydrostatic pressure

2015 ◽  
Vol 22 (11) ◽  
pp. 1225-1231 ◽  
Author(s):  
Elisa Lam ◽  
Qinfen Gu ◽  
Peter J. Swedlund ◽  
Sylvie Marchesseau ◽  
Yacine Hemar
2009 ◽  
Vol 79-82 ◽  
pp. 1643-1646 ◽  
Author(s):  
Qing Lin ◽  
Yan Bao Li ◽  
Xiang Hui Lan ◽  
Chun Hua Lu ◽  
Zhong Zi Xu

The amorphous calcium phosphate (ACP)/tricalcium silicate (Ca3SiO5, C3S) composite powders were synthesized in this paper. The exothermal behavior of C3S determined by isothermal conduction calorimetry indicated that the ACP could be synthesis by chemical precipitation method during the induction period (stage II) of C3S. The composite powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results indicated that nanosized ACP particles deposited on the surface of C3S particles to form core-shell structure at pH=10.5, and the nCa/nP of ACP could be controlled between 1.0 and 1.5. The core-shell structure is stable after sintered at 500 oC for 3 h to remove the β-cyclodextrin (β-CD). As compared with the irregular C3S particles (1~5 μm), the composite powders particles are spherical with a diameter of 40~150 μm. Therefore, to obtain the smaller size of composite powders, it is expected to avoid the aggregate of C3S particles in the aqueous solution by addition of dispersant. As compared with C3S, the composite powders may contribute better injectability, strength and biocompatibility.


The most widely accepted hypothesis to account for maturational changes in the X-ray diffraction characteristics of bone mineral has been the ‘amorphous calcium phosphate theory’, which postulates that an initial amorphous calcium phosphate solid phase is deposited that gradually converts to poorly crystalline hydroxyapatite. Our studies of bone mineral of different ages by X-ray radial distribution function analysis and 31 P n.m.r. have conclusively demonstrated that a solid phase of amorphous calcium phosphate does not exist in bone in any significant amount. 31 P n.m.r. studies have detected the presence of acid phosphate groups in a brushite-like configuration. Phosphoproteins containing O -phosphoserine and O -phosphothreonine have been isolated from bone matrix and characterized. Tissue and cell culture have established that they are synthesized in bone, most likely by the osteoblasts. Physicochemical and pathophysiological studies support the thesis that the mineral and organic phases of bone and other vertebrate mineralized tissues are linked by the phosphomonester bonds of O -phosphoserine and O -phosphothreonine, which are constituents of both the structural organic matrix and the inorganic calcium phosphate crystals.


Author(s):  
A. Kareem Dahash Ali ◽  
Nihad Ali Shafeek

This study included the fabrication of    compound (Tl2-xHgxBa2-ySryCa2Cu3O10+δ) in a manner solid state and under hydrostatic pressure ( 8 ton/cm2) and temperature annealing(850°C), and determine the effect of the laser on the structural and electrical properties elements in the compound, and various concentrations of x where (x= 0.1,0.2,0.3 ). Observed by testing the XRD The best ratio of compensation for x is 0.2 as the value of a = b = 5.3899 (A °), c = 36.21 (A °) show that the installation of four-wheel-based type and that the best temperature shift is TC= 142 K  .When you shine a CO2 laser on the models in order to recognize the effect of the laser on these models showed the study of X-ray diffraction of these samples when preparing models with different concentrations of the values ​​of x, the best ratio of compensation is 0.2 which showed an increase in the values ​​of the dimensions of the unit cell a=b = 5.3929 (A °), c = 36.238 (A°). And the best transition temperature after shedding laser is TC=144 K. 


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 53
Author(s):  
Adrian Szewczyk ◽  
Adrianna Skwira ◽  
Marta Ginter ◽  
Donata Tajer ◽  
Magdalena Prokopowicz

Herein, the microwave-assisted wet precipitation method was used to obtain materials consisting of mesoporous silica (SBA-15) and calcium orthophosphates (CaP). Composites were prepared through immersion of mesoporous silica in different calcification coating solutions and then exposed to microwave radiation. The composites were characterized in terms of molecular structure, crystallinity, morphology, chemical composition, and mineralization potential by Fourier-transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), and scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM-EDX). The application of microwave irradiation resulted in the formation of different types of calcium orthophosphates such as calcium deficient hydroxyapatite (CDHA), octacalcium phosphate (OCP), and amorphous calcium phosphate (ACP) on the SBA-15 surface, depending on the type of coating solution. The composites for which the progressive formation of hydroxyapatite during incubation in simulated body fluid was observed were further used in the production of final pharmaceutical forms: membranes, granules, and pellets. All of the obtained pharmaceutical forms preserved mineralization properties.


2009 ◽  
Vol 1193 ◽  
Author(s):  
B. L. Metcalfe ◽  
S. K. Fong ◽  
L. A. Gerrard ◽  
I. W. Donald ◽  
E. S. Welch ◽  
...  

AbstractThe choice of surrogate for plutonium oxide for use during the initial stages of research into the immobilization of intermediate level pyrochemical wastes containing plutonium andamericium oxides in a calcium phosphate host has been investigated by powder X-ray diffraction and X-ray absorption spectroscopy. Two non-radioactive surrogates, hafnium oxide and cerium oxide, together with radioactive thorium oxide were compared. Similarities in behaviour were observed for all three surrogates when calcined at the lowest temperature, 750°C but differences became more pronounced as the calcination temperature was increased to 950°C. Although some reaction occurred between all the surrogates and the host to form a substituted whitlockite phase, increasing the temperature led to a significant increase in the cerium reaction and the formation of an additional phase, monazite. Additionally it was observed that the cerium became increasingly trivalent at higher temperatures.


Author(s):  
X Li ◽  
D Li ◽  
B Lu ◽  
L Wang ◽  
Z Wang

The ability to have precise control over internal channel architecture, porosity, and external shape is essential for tissue engineering. The feasibility of using indirect stereo-lithography (SL) to produce scaffolds from calcium phosphate cement materials for bone tissue engineering has been investigated. The internal channel architecture of the scaffolds was created by removal of the negative resin moulds made with SL. Scanning electron microscopy (SEM) showed highly open, well-interconnected channel architecture. The X-ray diffraction examination revealed that the hydroxyapatite phase formed at room temperature in the cement was basically stable up to 850 °C. There was no phase decomposition of hydroxyapatite, although the crystallinity and grain size were different. The ability of resulting structure to support osteoblastic cells culture was tested in vitro. Cells were evenly distributed on exterior surfaces and grew into the internal channels of scaffolds. To exploit the ability of this technique, anatomically shaped femoral supracondylar scaffolds with 300-800 μm interconnected channels were produced and characterized.


Sign in / Sign up

Export Citation Format

Share Document