Laboratory experiments on failure characteristics of non-cohesive sediment natural dam in progressive failure mode

2019 ◽  
Vol 78 (17) ◽  
Author(s):  
Xiangang Jiang ◽  
Yunwei Wei ◽  
Lei Wu ◽  
Kaiheng Hu ◽  
Zhanyuan Zhu ◽  
...  
2020 ◽  
Vol 90 (7) ◽  
pp. 687-700
Author(s):  
Jamie L. Hizzett ◽  
Esther J. Sumner ◽  
Matthieu J.B. Cartigny ◽  
Michael A. Clare

ABSTRACT Seafloor sediment density flows are the primary mechanism for transporting sediment to the deep sea. These flows are important because they pose a hazard to seafloor infrastructure and deposit the largest sediment accumulations on Earth. The cohesive sediment content of a flow (i.e., clay) is an important control on its rheological state (e.g., turbulent or laminar); however, how clay becomes incorporated into a flow is poorly understood. One mechanism is by the abrasion of (clay-rich) mud clasts. Such clasts are common in deep-water deposits, often thought to have traveled over large (more than tens of kilometers) distances. These long travel distances are at odds with previous experimental work that suggests that mud clasts should disintegrate rapidly through abrasion. To address this apparent contradiction, we conduct laboratory experiments using a counter rotating annular flume to simulate clast transport in sediment density flows. We find that as clay clasts roll along a sandy floor, surficial armoring develops and reduces clast abrasion and thus enhances travel distance. For the first time we show armoring to be a process of renewal and replenishment, rather than forming a permanent layer. As armoring reduces the rate of clast abrasion, it delays the release of clay into the parent flow, which can therefore delay flow transformation from turbidity current to debris flow. We conclude that armored mud clasts can form only within a sandy turbidity current; hence where armored clasts are found in debrite deposits, the parent flow must have undergone flow transformation farther up slope.


2007 ◽  
Vol 334-335 ◽  
pp. 613-616
Author(s):  
Rui Xiang Bai ◽  
Bo Chen ◽  
Cheng Yan ◽  
Lin Ye ◽  
Ze Cheng Li ◽  
...  

This work investigated the post buckling strength and failure behavior of advanced grid stiffened structures (AGS) under thermal-mechanical load using a finite element method. Based on the first order shear deformation theory (FSDT), Von Karman non-linear deformation assumption, and a progressive failure criterion, the buckling, large deformation,local failure modes in the AGS were studied. The thermal effect was also analyzed. By some numerical examples, the failure characteristics of the AGS were discussed.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0246815
Author(s):  
Honggang Zhao ◽  
Haitao Sun ◽  
Dongming Zhang ◽  
Chao Liu

Two kinds of common tunnel shapes, i.e. elliptical opening and square opening were selected for biaxial compression tests, and the influences of two kinds of opening shapes on the mechanical properties, failure characteristics and failure modes of sandstone were compared and analyzed. The complex variable theory and mapping functions were used to obtain the analytical stress solution around elliptical and square openings. The results show that the stability of the specimen containing an elliptical opening was better than that of the specimen containing a square opening under the same lateral stress. Compared with the elliptical opening, the local damage was formed earlier in the square opening which might be caused by a higher stress concentration around the square opening. The stress distributions around openings were influenced by the opening shape and lateral stress coefficient. The top and bottom of square opening were more prone to tensile fracture, and the distribution range of tensile was larger than that of elliptical opening. When the opening failed, the intensity of square opening failure was weaker than that of elliptical opening. On the basis of the average frequency value and the rise angle value, the failure mode of specimen containing elliptical or square opening was distinguished. It was found that the mixed tension and shear failure dominated the failure of specimens with different opening shapes, and the number of shear cracks in the specimen containing a square opening was greater than that in the specimen containing an elliptical opening. The above method of judging failure mode by acoustic emission signals was well verified by the CT images of damaged specimens.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3943 ◽  
Author(s):  
Xiaolin Huang ◽  
Shengwen Qi ◽  
Bowen Zheng ◽  
Songfeng Guo ◽  
Ning Liang ◽  
...  

This paper microscopically investigated progressive failure characteristics of brittle rock under high-strain-rate compression using the bonded particle model (BPM). We considered the intact sample and the flawed sample loaded by split Hopkinson pressure bar respectively. Results showed that the progressive failure characteristics of the brittle rock highly depended on the strain rate. The intact sample first experienced in microcracking, then crack coalescing, and finally splitting into fragments. The total number of the micro cracks, the proportion of the shear cracks, the number of fragments and the strain at the peak stress all increased with the increasing strain rate. Also, a transition existed for the failure of the brittle rock from brittleness to ductility as the strain rate increased. For the flawed sample, the microcracking initiation position and the types of the formed macro cracks were influenced by the flaw angle in the initial stage. However, propagation of these early-formed macro cracks were prohibited in the later stages. New micro cracks were produced and then coalesced into diagonal macro cracks which could all form ‘X’-shape failure configuration regardless of the incline angle of the flaw. We explored micromechanics on progressive failure characteristics of the brittle rock under dynamic loads.


2021 ◽  
pp. 114880
Author(s):  
Xiaofei Pang ◽  
Fangchao Huang ◽  
Fulei Zhu ◽  
Shufeng Zhang ◽  
Yashun Wang ◽  
...  

2014 ◽  
Vol 711 ◽  
pp. 129-132
Author(s):  
Ri Hong Cao ◽  
Ping Cao ◽  
Pi Hua Wen ◽  
Rui Wen Chen

Mechanical behavior and failure mode of jointed rock is one of the significant researches in rock mechanics field. In this work, combined with similar material testing and discrete element numerical method(PFC) to investigate the mechanical behavior and failure mode of the rock-like materials with multi-fissures. The numerical analyses agree well with physical experimentation. It is found that, fissures will weaken the strength of the rock-like material, and when the angle of the fissures is about 25°, the strength of the material reaches a minimum value. The weakening effect of fissure on specimen strength would decrease gradually along with the increase of fissure angle. Compared with the effects of fissure angle, the influence of cracks number to the strength is relatively small. The fissure inclination angle was the main factor of the failure modes. With the different fissure inclination angles, the crack tip of Micro-cracks presents different developmental pattern. However, the influence of fissure distribution density on the failure mode mainly reflects at the fracture penetration mode.


Sign in / Sign up

Export Citation Format

Share Document