Determination of Zr Inoculation Effect on Improving Thermal Resistivity of EC Grade Aluminum

2014 ◽  
Vol 68 (4) ◽  
pp. 535-541 ◽  
Author(s):  
Alpay Tamer Ertürk ◽  
Ersin Asım Güven ◽  
Sedat Karabay
Keyword(s):  
2020 ◽  
Vol 9 (1) ◽  
pp. 23-27
Author(s):  
J.O. Adepitan ◽  
F.O. Ogunsanwo ◽  
J.D. Ayanda ◽  
A.A. Okusanya ◽  
A.D. Adelaja ◽  
...  

The study investigates the thermal properties of different insulating material used in building construction in Ijebu Ode, a tropical rainforest region, south western, Nigeria. Five insulating material; asbestos, Plaster of Paris (P.O.P), PolyVinyl Chloride (PVC), hardboard and paperboard, were subjected to thermal investigation using Lee’s disc electrical method. The result obtained showed that the thermal conductivities obtained are within the range of values specified for good insulating materials. Asbestos was found to be associated with the least thermal conductivity of the value 𝟎. 𝟏𝟕𝟏𝟕 𝑾𝒎-𝟏𝑲-𝟏while PVC had the highest thermal conductivity values of 𝟏. 𝟔𝟒𝟗𝟗 𝑾𝒎-𝟏𝑲-𝟏. This may be associated with the temperature and the heat flux on the surface of the material. The results obtained for thermal conductivity, thermal resistivity and thermal diffusivity correlated favourably when compared with those of previous work from other locations. Asbestos being the material with the lowest thermal conductivity is therefore recommended for use as the suitable insulating ceiling material in the study area. Keywords: thermal conductivity, diffusivity, resistivity, Lee’s disc


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Michael Adeyinka Oladunjoye ◽  
Oluseun Adetola Sanuade

This study measured in situ the thermal resistivity of soils at Olorunsogo Gas Turbine Power Station (335 MW Phase 1) which is located in Ogun State, Southwestern Nigeria. Ten pits, each of about 1.5 m below the ground surface, were established in and around the power plant in order to measure the thermal resistivity of soils in situ. A KD 2-Pro was used for the in situ measurement of thermal properties. Samples were also collected from the ten pits for laboratory determination of the physical parameters that influence thermal resistivity. The samples were subjected to grain size distribution analysis, compaction, specific gravity and porosity tests, moisture content determination, and XRD analysis. Also, thermal resistivity values were calculated by an algorithm using grain size distribution, dry density, and moisture content for comparison with the in situ values. The results show that thermal resistivity values range from 34.07 to 71.88°C-cm/W with an average of 56.43°C-cm/W which falls below the permissible value of 90°C-cm/W for geomaterials. Also, the physical parameters such as moisture content, porosity, degree of saturation, and dry density vary from 13.00 to 16.20%, 39.74 to 45.64%, 40.72 to 63.52%, and 1725.05 to 1930.00 Kg/m3, respectively. The temperature ranges from 28.92 to 35.39°C with an average of 32.11°C in the study area. The calculated thermal resistivity from an algorithm was found to vary from 48.43 to 81.22°C-cm/W with an average of 65.56°C-cm/W which is close to the thermal resistivity values measured in situ. Good correlation exists between the in situ thermal resistivity and calculated thermal resistivity with suggesting that both methods are reliable.


1975 ◽  
Vol 12 (6) ◽  
pp. 996-1005 ◽  
Author(s):  
V. M. Hamza ◽  
A. E. Beck

Gamma ray spectrometric techniques have been used for the determination of uranium, thorium and potassium contents from cores selected at 3 to 4 m intervals from a 600 m deep borehole in sedimentary formations and the results compared with a similarly detailed examination of heat flow, and some physical properties, from the same borehole.The results indicate a broad positive correlation between thermal resistivity and some of the radio-element parameters and between heat flow and heat production. The heat production variations down the borehole are not quantitatively sufficient to explain the observed heat flow variations. The uranium series appears to be in radioactive equilibrium even in those sections where the uranium content is low, the porosity relatively high and the heat flow low; it is therefore concluded that the depletion of uranium is due to an ancient rather than a recent leaching process and that it is unlikely that the heat flow variations along the borehole are due to existing or recent underground waterflows. Long term geochemical reactions are now thought to be the most likely explanation of the heat flow variations.


2000 ◽  
Vol 6 (1) ◽  
pp. 32-38 ◽  
Author(s):  
Jonas Juodvalkis ◽  
Egidijus Blaževičius ◽  
Ramūnas Albertas Vipartas

Today the tendency of building renovation is one-sided, ie thermal resistivity of enclosure constructions is being increased ignoring the temperature control possibilities in flats. Appreciable heat savings may be achieved solely through a duly coordination of the constructive building solutions with the type and power of heating systems and by the evaluation of an unfixed character of heat exchange. In the proposed method a building is treated as a heterogeneous body (∞>Bi>0). The conditions of the 3rd rate are accepted for the heat exchange between the elements of this body and the surroundings (1). The result of the equation solution is the determination of temperature alteration law in each element of a heterogeneous body (2). The non-monolithic enclosure constructions having a final number of elements may be changed by an equivalent monolithic body with equivalent thermal properties (3; 4).


1966 ◽  
Vol 25 ◽  
pp. 93-97
Author(s):  
Richard Woolley

It is now possible to determine proper motions of high-velocity objects in such a way as to obtain with some accuracy the velocity vector relevant to the Sun. If a potential field of the Galaxy is assumed, one can compute an actual orbit. A determination of the velocity of the globular clusterωCentauri has recently been completed at Greenwich, and it is found that the orbit is strongly retrograde in the Galaxy. Similar calculations may be made, though with less certainty, in the case of RR Lyrae variable stars.


1999 ◽  
Vol 190 ◽  
pp. 549-554
Author(s):  
Nino Panagia

Using the new reductions of the IUE light curves by Sonneborn et al. (1997) and an extensive set of HST images of SN 1987A we have repeated and improved Panagia et al. (1991) analysis to obtain a better determination of the distance to the supernova. In this way we have derived an absolute size of the ringRabs= (6.23 ± 0.08) x 1017cm and an angular sizeR″ = 808 ± 17 mas, which give a distance to the supernovad(SN1987A) = 51.4 ± 1.2 kpc and a distance modulusm–M(SN1987A) = 18.55 ± 0.05. Allowing for a displacement of SN 1987A position relative to the LMC center, the distance to the barycenter of the Large Magellanic Cloud is also estimated to bed(LMC) = 52.0±1.3 kpc, which corresponds to a distance modulus ofm–M(LMC) = 18.58±0.05.


1961 ◽  
Vol 13 ◽  
pp. 29-41
Author(s):  
Wm. Markowitz
Keyword(s):  

A symposium on the future of the International Latitude Service (I. L. S.) is to be held in Helsinki in July 1960. My report for the symposium consists of two parts. Part I, denoded (Mk I) was published [1] earlier in 1960 under the title “Latitude and Longitude, and the Secular Motion of the Pole”. Part II is the present paper, denoded (Mk II).


Sign in / Sign up

Export Citation Format

Share Document